ORIGINAL PAPER

Addition of allylzinc to α -amino acid-derived imines: synthesis of diamino alcohols by hydroboration

Mickael Virlouvet · Helmut Goesmann · Claus Feldmann · Joachim Podlech

Received: 6 October 2009/Accepted: 12 December 2009/Published online: 4 February 2010 © Springer-Verlag 2010

Abstract Imines obtained by condensation of Z-protected or Boc-protected α -amino aldehydes with α -amino *tert*-butyl esters or with *O*-silyl-protected amino alcohols were reacted with preformed allyl zinc yielding homoallylamines with yields around 50% and selectivities ranging from 50:50 to 90:10. Hydroboration of the terminal double bond furnished diamino alcohols with yields up to 97%. The configuration of the substrates was determined by X-ray-crystallographic analysis of a hydroboration product and comparison of physical data.

Keywords Amino acids · Schiff bases · Allyl addition · Nucleophilic additions · Amino alcohols

Introduction

Amino acids have widely been used as starting materials in stereoselective synthesis [1]. Astonishingly, this pool of chiral substances [2, 3] has never been used for addition of C-nucleophiles to amino acid-derived α -amino imines (Scheme 1), most probably because of the rather poor reactivity of imines as compared with, e.g., aldehydes [4]. Similarly reactive α -amino hydrazones [5, 6] and α -amino nitrones [7–9, and references cited therein] have been used

M. Virlouvet · J. Podlech (🖾) Karlsruher Institut für Technologie (KIT), Institut für Organische Chemie, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany e-mail: joachim.podlech@kit.edu

H. Goesmann · C. Feldmann Karlsruher Institut für Technologie (KIT), Institut für Anorganische Chemie, Engesserstraße 15, 76131 Karlsruhe, Germany occasionally in the addition of C-nucleophiles. The addition of cyanide to α -amino imines has been reported once [10].

In the course of our studies on the synthesis of peptidomimetics [11–17] we needed allyl adducts to α -amino imines and the resulting alcohols obtained by subsequent hydroboration. Here we report the synthesis of these compounds, which should be useful starting materials in organic synthesis.

Results and discussion

Preparation of *a*-amino acid-derived imines

We decided to use N-Boc (tert-butyloxycarbonyl)-protected and N-Z (benzyloxycarbonyl)-protected α -amino acids as starting materials to enable deprotection of the compounds obtained by standard procedures [18]. N-Protected amino aldehydes used for the preparation of imines were obtained via two routes (Scheme 2). Route A was used for the preparation of Z-protected products [18] and included protection, esterification [19], and reduction of thus obtained Z-protected amino esters with lithium aluminum hydride [20]. In route B we started with reduction of an α -amino acid yielding an amino alcohol [21] and subsequent N-protection with Boc [22] or Z [23]. Route A proved to be more effective, because fewer by-products were obtained during this three-step procedure and chromatographic purification of the protected amino alcohols was often dispensable. In both routes a final oxidation with either Dess-Martin periodinane [24] or with sodium hypochlorite and catalytic amounts of 2,2,6,6-tetramethylpiperidine-N-oxide (TEMPO) [25] furnished N-protected amino aldehydes with yields ranging from 50 to 80%.

Scheme 2

Amino components used for the preparation of imines were similarly prepared from α -amino acids (Scheme 3). Amino acid *tert*-butyl esters were obtained by transesterification with *tert*-butyl acetate [26] and *O*-silyl-protected amino alcohols were obtained by silylation of amino alcohols with *tert*-butyldimethylsilyl chloride (TBSCl) or *tert*-butyldiphenylsilyl chloride (TBDPSCl) [27].

Imines were obtained by mixing stoichiometric amounts of an aldehyde and an amine component together with either molecular sieves (4 Å) or with anhydrous sodium sulfate (Scheme 4).

Addition of organozinc compounds to amino acidderived imines

When we applied a method reported by Bocoum et al. [28], in which a mixture of imine 1 and allyl bromide was added to a suspension of zinc and cerium chloride (CeCl₃ \cdot 7H₂O) in tetrahydrofuran at 0 °C, no consumption of the zinc and no reaction was observed. But when we added imine 1 at 0 °C to a preformed organozinc compound obtained by reaction of allyl bromide with zinc and cerium chloride, a 51% yield of the homoallylamine was obtained (Scheme 5). In this variation it was mandatory to keep the reaction temperature for the formation of the organozinc compound below 20 °C to prevent decomposition of the reagent. Oxidative work-up in the subsequent hydroboration of alkene 2 had to be performed without sodium hydroxide, to prevent saponification of the methyl ester. Nevertheless, utilization of potassium acetate as base [29] did not prove reactive enough to achieve formation of the terminal alcohol 3.

Scheme 4

To obtain compounds suitable for a hydroboration by an oxidative workup in the presence of sodium hydroxide we used either *tert*-butyl ester derivatives or silyl-protected amino alcohol-derived imines **4–19** in further experiments.

Allyl addition under conditions as applied to the methyl ester 1 gave homoallylamines 20–35 (Table 1) as mixtures of isomers, which could be separated by conventional chromatography except for product 35. The allyl adducts were obtained in yields up to 66%, where differing amounts of side products were observed. Small amounts (up to 30%) of homoallylalcohols 36 resulted from allyl addition to amino aldehydes present, because of partial imine hydrolysis during the reaction. Degradation products were observed after imine formation in up to 10% yield.

Products **37** and **38** given in Fig. 1 resulted after attempted condensation of Z-leucinal and valine *tert*butyl ester. These compounds were unambiguously identified by comparison with published spectra [30]. A similar reaction has previously been reported by Lethinen and Brunow [31]; no explanation or mechanism was

Table 1 Allyl addition to α -amino acid-derived imines

No.	Imine	PG	R^1	R ²	Х	R ³	Product ^a	Yield (%)	d.r. ^b
1	4	Boc	iPr	Me	H,H	TBS	20a, 20b	48	70:30 ^c
2	5	Ζ	<i>i</i> Bu	Me	H,H	TBDPS	21a, 21b	27	60:40 ^d
3	6	Ζ	iPr	Me	H,H	TBDPS	22a, 22b	59	90:10 ^d
4	7	Boc	iPr	iPr	H,H	TBDPS	23a, 23b	57	43:57 ^c
5	8	Boc	iPr	Bn	H,H	TBS	24a, 24b	44	53:47 ^{d,e}
6	9	Ζ	<i>i</i> Bu	Bn	H,H	TBS	25a, 25b	55	n.d. ^f
7	10	Ζ	<i>i</i> Bu	Me	H,H	TBS	26a, 26b	32	66:34
8	11	Ζ	iPr	Me	H,H	TBS	27a, 27b	36	n.d. ^f
9	12	Ζ	iPr	<i>i</i> Bu	H,H	TBS	28a, 28b	50	65:35 ^c
10	13	Ζ	<i>i</i> Bu	iPr	0	<i>t</i> Bu	29a, 29b	38	37:63 ^c
11	14	Ζ	iPr	Me	0	<i>t</i> Bu	30a, 30b	66	80:20 ^d
12	15	Ζ	iPr	<i>i</i> Bu	0	<i>t</i> Bu	31a, 31b	40	37:63 ^d
13	16	Ζ	<i>i</i> Bu	Bn	0	<i>t</i> Bu	32a, 32b	49	47:53 ^d
14	17	Ζ	iPr	iPr	0	<i>t</i> Bu	33a, 33b	31	49:51 ^d
15	18	Ζ	iPr	Bn	0	<i>t</i> Bu	34a, 34b	64	87:13 ^d
16	19	Ζ	Me	<i>i</i> Bu	0	<i>t</i> Bu	35a, 35b	33	67:33 ^{c,g}

 a Conditions: Zn (2 eq.), CeCl_3·7H_2O (0.1 eq.), allyl bromide (1.9 eq.), THF, 0 °C to r.t., overnight

^b Assignment of the stereoisomers was made on the basis of retention times, optical rotation, and NMR spectroscopic data

^c Determination of diastereomeric ratio by NMR spectroscopy

^d Determination of diastereomeric ratio by HPLC

^e Configuration unambiguously determined by X-ray crystallographic analysis of subsequent product **44a** (53:47 *S:R*)

f Diastereomeric ratio could not be determined

^g Not separable by chromatography. Assignment of configuration was not possible

given for this reaction. To prevent this side reaction several dehydrating agents (sodium sulfate, alumina, molecular sieves) were tested and the reaction was performed with strict exclusion of oxygen and light, but its appearance could not be prevented.

Diastereoselectivities in the allyl addition ranged from 50:50 to 90:10. In the reactions of amino alcohol derivatives **4–12** the best selectivities were obtained for alaninederived substrates (entries 1–3 and 7), whereas bulkier side chains led to reduced selectivities. No general trend was observed for *tert*-butyl ester derivatives **13–19**.

Assignment of the isomers was accomplished on the basis of tendencies in the retention times (thin-layer

Fig. 1 Side products observed during allyl addition and imine formation

chromatography), in optical rotation, and in NMR spectroscopic data (Table 2). Generally, the isomer eluting first has a significantly lower optical rotation, generally a smaller vicinal coupling constant $({}^{3}J)$ between hydrogen atoms 4'-H and 5'-H, and a somewhat lower shift for C-4'. The relative configuration of the isomers was assigned with the help of these data and because of unambiguous assignment of the configuration in isomer **24a** obtained after X-ray crystallographic analysis of its derivative **44a** (vide infra) suggesting a 4'S configuration for isomers **20–34a**.

The best results in the allyl additions were obtained at 0 °C. Selectivities in the allyl addition to aldimine 14 (c.f. Table 1, entry 11) dropped from 80:20 at 0 °C to 60:40 at -78 °C, whereas yields were essentially the same. The effect of Lewis acids and other additives on the outcome of the reaction was tested (Table 3). Allyl addition to imine 17 gave a poor 47:53 selectivity without Lewis acid. Selectivities and yields did not improve significantly in the presence of CeCl₃·7H₂O, Sm(OTf)₃, or ZnCl₂. Addition of Schreiner's catalyst **39** (Fig. 2) [32–34, and references cited therein] as a hydrogen bond donor led to a comparable 50:50 selectivity and a slightly improved 56% yield. Nevertheless, the reactions were performed in the presence of cerium chloride despite the reduced yields, because the allylzinc reagent was preferentially obtained with this salt present.

Permutation of both amino acid moieties' configurations revealed an insignificant match–mismatch interaction (Scheme 6). The selectivities, if any, seem to be ruled by the stereogenic centres in the amino ester-based moiety.

Hydroboration of homoallylamines

Hydroboration of homoallylamines **20–35** with 9-borabicyclo[3.3.1]nonane (9-BBN) and subsequent oxidative work-up [35] furnished terminal alcohols **42–52** with high regioselectivities [36] and with good yields (Scheme 7, Table 4).

Compound **35** was carried on as a mixture of isomers, although only one isomer of the alcohol **52a** was isolated after transformation and chromatography (entry 14). The structure of diamino alcohol **44a** was determined by X-ray-crystallographic analysis (Fig. 3, Table 5) giving further unambiguous evidence for the structure of alkene **24a**.

Compound	Config. C-4'	$\begin{array}{c} [\alpha]_{D}^{20} \\ (10^{-1} \text{ deg} \\ \text{cm}^2 \text{ g}^{-1}) \end{array}$	$R_{ m f}^{ m a}$	1 H NMR ${}^{3}J_{4'-5'}$ (Hz)	13 C NMR δ (C-4') (ppm)
20a	S	-3.8	0.44	1.7	54.3
20b	R	+16.1	0.35	2.1	54.7
21a	S	-6.5	0.41	1.8	n.d.
21b	R	+18.5	0.36	2.0	n.d.
22a	S	-7.8	0.37	1.6	n.d.
22b	R	+20.0	0.30	1.7	n.d.
23a	S	-17.3	0.52	1.6	n.d.
23b	R	-1.9	0.52	2.4	54.7
24a	S^{b}	-40.6	0.44	1.7	54.6
24b	R	+4.0	0.35	n.d.	55.7
25a	S	-18.0	0.53	1.7–2.2	57.6
25b	R	+17.6	0.43	3.2	58.2
26a	S	-4.6	0.45	1.8	57.4
26b	R	+37.9	0.35	n.d.	57.5
27a	S	-1.1	0.26	2.0	54.5
27b	R	+19.7	0.15	n.d.	55.7
28a	S	-10.9	0.51	1.5	54.2
28b	R	+14.3	0.37	n.d.	55.7
29a	S	-31.6	0.44	1.9	58.9
29b	R	± 0.0	0.40	3.1	60.1
30a	S	-27.8	0.33	1.5	55.4
30b	R	-1.0	0.15	4.2	55.7
31a	S	-31.9	0.43	1.4	55.6
31b	R	-8.8.	0.30	4.3	56.1
32a	S	-15.6	0.41	1.6	58.7
32b	R	+8.5	0.34	3.3	59.8
33a	S	-28.5	0.47	1.5	55.9
33b	R	-7.0	0.38	4.3	56.6
34a	S	-43.2	0.33	1.5	55.6
34b	R	-21.3	0.15	5.7	57.3
35a	S	n.d.	0.41	n.d.	n.d.
35b	R	n.d.	0.41	n.d.	n.d.

Numbering differs in the respective compounds

n.d., not determined

^a Retention factor: Eluent *n*-hexane–AcOEt, 6:1

 $^{\rm b}$ Unambiguously assigned by X-ray-crystallographic analysis of derivative 44a

Conclusion

Allyl addition to α -amino acid-derived imines using organozinc compounds, a type of reaction not published

Table 3 Allyl addition in the presence of additives						
No.	Additive	Yield (%)	d.r. ^a			
1	_	49	47:53			
2	CeCl ₃ ·7H ₂ O	31	49:51			
3	Sm(OTf) ₃	53	48:52			
4	ZnCl ₂	51	50:50			
5	39	56	50:50			

Allyl addition to imine **17**; Further conditions as given in Table 1 ^a Determination of diastereomeric ratio by HPLC

Fig. 2 Schreiner's catalyst 39 used as hydrogen bond donor

Scheme 6

Scheme 7

before, has been achieved with reasonable yields and selectivities up to 90:10. The thus obtained homoallylamines were transformed, by hydroboration, to diamino alcohols bearing a terminal hydroxy function. These highly functionalized substrates have been used in the preparation of peptidomimetics. These investigations will be reported elsewhere.

Experimental

Tetrahydrofuran (THF) and Et_2O were distilled from sodium benzophenone ketyl radical; CH_2Cl_2 was distilled from CaH₂. Abbreviations: TBS, *tert*-butyldimethylsilyl; TBDPS, *tert*-butyldiphenylsilyl; 9-BBN, 9-borabicyclo[3.3.1] nonane; TEMPO, tetramethylpiperidine-*N*-oxide. All moisture-sensitive reactions were carried out under oxygen-free argon or N₂ using oven-dried glassware and a vacuum line.

Table 4	Synthesis	of	diamino	alcohols	by	hydroboration
---------	-----------	----	---------	----------	----	---------------

No.	Alkene	PG	\mathbb{R}^1	\mathbb{R}^2	Х	R ³	Product	Yield (%)
1	20a	Boc	iPr	Me	H,H	TBS	42a	87
2	22a	Ζ	iPr	Me	H,H	TBDPS	43a	97
3	24a	Boc	iPr	Bn	H,H	TBS	44a	83
4	25a	Ζ	<i>i</i> Bu	Bn	H,H	TBS	45a	79
5	25b	Ζ	<i>i</i> Bu	Bn	H,H	TBS	45a	81
6	27a	Ζ	iPr	Me	H,H	TBS	46 a	89
7	30b	Ζ	iPr	Me	0	<i>t</i> Bu	47b	62
8	31a	Ζ	iPr	<i>i</i> Bu	0	<i>t</i> Bu	48 a	94
9	31b	Ζ	iPr	<i>i</i> Bu	0	<i>t</i> Bu	48b	84
10	32a/32b ^a	Ζ	<i>i</i> Bu	Bn	0	<i>t</i> Bu	$49a, 49b^{b}$	52
11	33b	Ζ	iPr	iPr	0	<i>t</i> Bu	50b	71
12	34a	Ζ	iPr	Bn	0	<i>t</i> Bu	51 a	73
13	34b	Ζ	iPr	Bn	0	<i>t</i> Bu	51b	94
14	35a	Ζ	Me	<i>i</i> Bu	0	<i>t</i> Bu	52a ^c	64

^a As a mixture of isomers

^b Isomers could be separated

^c Only one isomer was obtained after purification by chromatography

Fig. 3 Structure of 44a in the crystal

Flash column chromatography [37] was carried out using Merck silica gel 60 (230–400 mesh), and thin-layer chromatography (TLC) was carried out using commercially available Merck F_{254} pre-coated sheets. Medium-pressure liquid chromatography (MPLC): Pump (Labomatic MD-50), detection by UV absorption (Latek UVIS 200); Merck LiChroprep Si 60 (15–25 μ m). HPLC: Analyses of diastereoisomer distributions were carried out with a Merck-Hitachi LaChrom D7000 apparatus with a L7100 mixer and diode-array detection (L7455) on a Merck LiChrospher Si 60 chromatographic column (5 μ m, flow: 1–1.5 cm³ min⁻¹). ¹H and ¹³C NMR spectra were recorded on a Bruker Cryospek WM-250, an AM-400, or a DRX 500. Chemical shifts are given in ppm downfield of tetramethylsilane. ¹³C NMR spectra were recorded with broadband proton decoupling and were assigned using DEPT 135 and DEPT 90 experiments. Melting points were measured on a Büchi apparatus. IR spectra were recorded on a Bruker IFS-88 spectrometer. Elemental analyses were performed on a Heraeus CHN–O-rapid or on an elementar vario MICRO and were in good agreement with calculated values. Electron-impact high-resolution mass spectra were recorded on a Finnigan MAT-90. Optical rotations were recorded on a Perkin Elmer 241 polarimeter (using the sodium D line, 589 nm) and specific optical rotations [α] are given in units of $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$.

Allyl additions

General procedure (GP 1) for preparation of amino alcohols

The amino acid (1.00 mmol) was added in portions at 0 °C to a suspension of 57 mg LiAlH₄ (1.50 mmol) in 10 cm³ anhydrous Et₂O and the mixture was heated to reflux for 3 h. The reaction was stopped by careful addition of 1.50 cm³ H₂O, 1.50 cm³ aqueous NaOH (3 M), and 4.50 cm³ H₂O at 0 °C with vigorous stirring. The obtained suspension was stirred for 1 h and filtered. The filtrate was dried (Na₂SO₄), concentrated, and purified by distillation or recrystallization.

General procedure (GP 2) for preparation of *N*-Z-protected amino alcohols

Benzyl chloroformate (148 mm³, 1.05 mmol) was added at 0 °C to a mixture of amino alcohol (1.00 mmol), 5 cm³ CH₂Cl₂, and 5 cm³ aqueous saturated NaHCO₃ solution. The mixture was stirred for 3 h at room temperature and the aqueous layer was extracted with CH₂Cl₂ (2×10 cm³). The combined organic layers were dried (Na₂SO₄), concentrated, and purified by distillation or recrystallization.

General procedure (GP 3) for preparation

of N-Boc-protected amino alcohols

Boc₂O (229 mg, 1.05 mmol) was added at 0 °C to a solution of amino alcohol (1.00 mmol) and 153 mm³ Et₃N (1.10 mmol) in 10 cm³ THF. The mixture was stirred for 18 h at room temperature and the solvent was removed. The residue was diluted in 50 cm³ EtOAc and the solution was washed with 25 cm³ H₂O and 25 cm³ brine, dried (Na₂SO₄), concentrated, and purified by column chromatography (silica gel).

General procedure (GP 4) for preparation of *O*-TBSprotected or *O*-TBDPS-protected amino alcohols TBSCl (301 mg, 2.00 mmol) or TBDPSCl (550 mg, 2.00 mmol) was added portionwise at 0 °C to a mixture

 Table 5 Crystal data and structure refinement for *tert*-butyl (3*S*,4*S*,2'*S*)-4-[1-(*tert*-butyldimethylsilyloxy)-3-phenyl-2-propylamino]-7-hydroxy-2-methyl-3-heptylcarbamate (44a)

Identification code	pod08 and CCDC-721237
Empirical formula	$C_{28}H_{52}N_2O_4Si$
Formula weight	$508.81 \text{ g mol}^{-1}$
Temperature	203(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P21
Unit cell dimensions	$a = 11.433(2)$ Å, $\alpha = 90^{\circ}$
	$b = 9.824(2)$ Å, $\beta = 108.80(3)^{\circ}$
	$c = 15.575(3)$ Å, $\gamma = 90^{\circ}$
Volume, Z	1,656.0(6) Å ³ , 2
Density (calculated)	1.020 Mg m^{-3}
Absorption coefficient	0.101 mm^{-1}
F(000)	560
Crystal size	$0.4 \times 0.06 \times 0.08 \text{ mm}^3$
$2\Theta_{\rm max}$	48.02°
Limiting indices	$\begin{array}{l} -13 \leq h \leq 13, -10 \leq k \leq 10, \\ -17 \leq l \leq 17 \end{array}$
Reflections collected	9,579
Independent reflections	$4,969 \ [R(int) = 0.0540]$
Refinement method	Full-matrix least squares on F^2
Data/restraints/parameters	4,969/1/328
Goodness-of-fit on F^2	0.958
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0468, \omega R_2 = 0.0911$
R indices (all data)	$R_1 = 0.0933, \omega R_2 = 0.1078$
Largest diff. peak and hole $(e/Å^3)$	0.15 and -0.17
Structure solution SHELXS-97	[38]
Structure refinement SHELXL-97	[38]

Details of the crystallographic analysis of *tert*-butyl (3*S*,4*S*,2'*S*)-4-[1-(*tert*-butyldimethylsilyloxy)-3-phenyl-2-propylamino]-7-hydroxy-2methyl-3-heptylcarbamate (**44a**) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC-721237. Data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: +44-1223-336033 or e-mail: deposit@ccdc.cam.ac.uk)

of amino alcohol (1.00 mmol) and 150 mg imidazole (2.20 mmol) in 20 cm³ CH₂Cl₂. The mixture was stirred overnight at room temperature and the reaction was stopped by addition of 10 cm³ aqueous saturated NaHCO₃ solution. The aqueous layer was extracted with CH₂Cl₂ (2 × 20 cm³). The combined organic layers were dried (Na₂SO₄), concentrated, and purified by column chromatography (silica gel).

General procedure (GP 5) for preparation of amino acid *tert*-butyl esters

 $HClO_4$ (70%, 3.60 cm³, 15.0 mmol) was added slowly at 0 °C to a suspension of the amino acid (10.0 mmol) in 24 cm³ AcOtBu. The mixture was stirred for 24 h at room temperature, diluted with H₂O, and brought to pH 12 by

careful addition of K_2CO_3 . The aqueous layers were extracted with Et_2O (2 × 50 cm³) and the combined organic layers were washed with brine, dried (Na₂SO₄), concentrated, and used without further purification.

General procedure (GP 6) for preparation of *N*-protected amino aldehydes

Variation A: 530 mg Dess–Martin periodinane (1.25 mmol) was added to a solution of the *N*-protected amino alcohol (1.00 mmol) in 10 cm³ CH₂Cl₂. The mixture was stirred for 2–4 h (monitoring with TLC) and further periodinane was added if necessary. A solution of 1 g NaHCO₃ and 1 g Na₂S₂O₃ in 15 cm³ H₂O was added at room temperature with vigorous stirring and stirring was continued for 45 min. The aqueous layer was extracted with CH₂Cl₂ (2 × 10 cm³) and the combined organic layers were washed with 20 cm³ brine, dried (Na₂SO₄), concentrated, and used without purification.

Variation B: An aqueous solution of 0.71 cm^3 NaOCl (1.14 mmol) and 252 mg NaHCO₃ (3.00 mmol) was added at 0 °C within 1–2 h to a mixture of the *N*-protected amino alcohol (1.00 mmol), 108 mg NaBr (1.00 mmol), and 0.39 mg TEMPO (0.02 mmol) in 3 cm³ toluene, 3 cm³ EtOAc, and 0.5 cm³ H₂O. The aqueous layer was extracted with Et₂O (2 × 5 cm³) and the organic layers were washed successively with 8 mg KI in 2 cm³ 10% KHSO₄ solution, with 1 cm³ 10% Na₂S₂O₃ solution, and with 2 cm³ brine. Drying (Na₂SO₄) and concentration yielded the aldehyde, which was used without purification.

General procedure (GP 7) for preparation

of amino acid-derived imines

The amino acid-derived amine (1.00 mmol) was added to a mixture of the *N*-protected amino aldehyde (1.00 mmol), 500 mg molecular sieves (4 Å), and 10 cm³ CH₂Cl₂. After stirring for 3 h at room temperature, filtration, and concentration, a crude product was obtained, which was used without purification.

General procedure (GP 8) for allyl addition to amino acid-derived imines

Allyl bromide (165 mm³, 1.90 mmol) was added slowly at 0 °C under an argon atmosphere to a suspension of 130 mg Zn (2.00 mmol) and 37 mg CeCl₃·7H₂O (0.10 mmol) in 3 cm³ anhydrous THF. Stirring was continued for 30–60 min at 0 °C until complete consumption of the zinc and a solution of the aldimine in 3 cm³ anhydrous THF was added slowly. The mixture was warmed to room temperature, stirred for 15 h, and the reaction was stopped by addition of 904 mg Na₄EDTA·4H₂O (2.00 mmol) in 10 cm³ H₂O. The mixture was extracted with Et₂O (4 × 10 cm³). The combined organic layers were washed with 25 cm³ brine, dried (Na₂SO₄), and concentrated, and

the residue was separated and purified by chromatography (silica gel).

tert-Butyl (3S,4S,2'S) and (3S,4R,2'S)-4-[1-(tert-butyldimethylsilyloxy)-2-propylamino]-2-methylhept-6-en-3ylcarbamate (**20a**, **20b**, C₂₂H₄₆N₂O₃Si)

Aldimine **4** (1.49 g, 4.00 mmol), 524 mg Zn (8.00 mmol), 149 mg CeCl₃·7H₂O (0.40 mmol), and 662 mm³ allyl bromide (7.60 mmol) were reacted according to GP 8 in 5 cm³ THF within 16 h. Chromatography (hexanes–Et₂O 8:1 \rightarrow 6:1) yielded 561 mg adduct **20a** (1.35 mmol, 34%) and 238 mg adduct **20b** (0.57 mmol, 14%) as colourless oils.

20a: $R_{\rm f} = 0.44$ (hexanes-EtOAc 6:1); $[\alpha]_{\rm D}^{20} = -3.8 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 1.17, CHCl₃); ¹H NMR (400 MHz, $CDCl_3$): $\delta = 0.06$ (s, 3H, SiCH₃), 0.06 (s, 3H, SiCH₃), 0.90 (s, 9H, SiC(CH₃)₃), 0.89–0.93 (m, 6H, 3'-H₃, CH(CH₃)_a $(CH_3)_b$, 0.92 (d, ${}^{3}J = 6.8$ Hz, 3H, $CH(CH_3)_a(CH_3)_b$), 1.20-1.50 (bs, 1H, CHNHCH), 1.44 (s, 9H, OC(CH₃)₃), 1.66 (dsept, ${}^{3}J = 9.3$ Hz, ${}^{3}J = 6.9$ Hz, 1H, 2-H), 2.05 (dt, $^{2}J = 13.8$ Hz, $^{3}J = 7.9$ Hz, 1H, 5-H_a), 2.15–2.23 (m, 1H, 5-H_b), 2.71 (ddd, ${}^{3}J = 8.2$ Hz, ${}^{3}J = 4.8$ Hz, ${}^{3}J = 1.5$ Hz, 1H, 4-H), 2.79 (φ -quintd, ${}^{3}J = 6.4$ Hz, ${}^{3}J = 4.2$ Hz, 1H, 2'-H), 3.21 (ddd, ${}^{3}J = 10.3$ Hz, ${}^{3}J = 9.3$ Hz, ${}^{3}J = 1.7$ Hz, 1H, 3-H), 3.32 (dd, ${}^{2}J = 9.8$ Hz, ${}^{3}J = 7.0$ Hz, 1H, 1'-H_a), 3.53 (dd, ${}^{2}J = 9.8$ Hz, ${}^{3}J = 4.2$ Hz, 1H, 1'-H_b), 4.80 (d, ${}^{3}J = 10.2$ Hz, 1H, NHCO), 5.05 (ddt, ${}^{3}J = 10.2$ Hz, ${}^{3}J = 2.2$ Hz, ${}^{3}J = 1.0$ Hz, 1H, 7-H_{cis}), 5.06–5.13 (m, 1H, 7-H_{trans}), 5.84 (ddt, ${}^{3}J = 17.2$ Hz, ${}^{3}J = 10.1$ Hz, ${}^{3}J =$ 7.3 Hz, 1H, 2-H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = -5.4$ (q, SiCH₃), -5.3 (q, SiCH₃), 17.7 (q, C-3'), 18.3 (s, $SiC(CH_3)_3$), 19.4 (q, $CH(CH_3)_a(CH_3)_b$), 20.1 $(q, CH(CH_3)_a(CH_3)_b), 25.9 (q, SiC(CH_3)_3), 28.4 (q, CH_3)_a)$ OC(CH₃)₃), 30.3 (d, C-2), 37.7 (t, C-5), 52.4 (d, C-2'), 54.3 (d, C-4), 58.1 (d, C-3), 67.4 (t, C-1'), 78.4 (s, OC(CH₃)₃), 117.4 (t, C-7), 135.5 (d, C-6), 156.3 (s, NHCO) ppm; IR (KBr): $\overline{v} = 3,446$ (N–H), 1,719 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 415 (100) $[(M + H)^+]$; HRMS (C₂₂H₄₇N₂O₃Si): calcd. 415.3356, found 415.3360.

20b: $R_f = 0.35$ (hexanes–EtOAc 6:1); $[\alpha]_{D}^{20} = +16.1 \times 10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.05$ (s, 6H, Si(CH₃)₂), 0.70–0.90 (bs, 1H, CHN*H*CH), 0.90 (s, 9H, SiC(CH₃)₃), 0.92 (d, ³J = 6.7 Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.93 (d, ³J = 6.7 Hz, 3H, CH(CH₃)_a), 0.92 (d, ³J = 6.7 Hz, 3H, CH(CH₃)_a), 1.02 (d, ³J = 6.4 Hz, 3H, 3'-H₃), 1.44 (s, 9H, OC(CH₃)₃), 1.67 (dsept, ³J = 9.3 Hz, ³J = 6.7 Hz, 1H, 2-H), 2.09–2.17 (m, 2H, 5-H₂), 2.70 (qt, ³J = 6.4 Hz, ³J = 5.1 Hz, 1H, 2'-H), 2.83 (td, ³J = 6.6 Hz, ³J = 2.1 Hz, 1H, 4-H), 3.17 (td, ³J = 9.7 Hz, ³J = 2.1 Hz, 1H, 3-H), 3.40 (dd, ²J = 9.8 Hz, ³J = 5.4 Hz, 1H, 1'-H_a), 3.45 (dd, ²J = 9.8 Hz, ³J = 4.7 Hz, 1H, 1'-H_b), 4.97 (d, ³J = 10.0 Hz, 1H, NHCO), 5.03–5.10

(m, 2H, 7-H₂), 5.81 (ddt, ${}^{3}J = 17.7$ Hz, ${}^{3}J = 9.6$ Hz, ${}^{3}J = 7.3$ Hz, 1H, 6-H) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = -5.4$ (q, Si(*C*H₃)₂), 18.4 (s, Si*C*(CH₃)₃), 18.8 (q, C-3'), 19.5 (q, CH(*C*H₃)_a(CH₃)_b), 20.1 (q, CH(CH₃)_a(*C*H₃)_b), 25.9 (q, SiC(*C*H₃)₃), 28.5 (q, OC(*C*H₃)₃), 30.7 (d, C-2), 38.6 (t, C-5), 53.3 (d, C-2'), 54.7 (d, C-4), 58.9 (d, C-3), 67.4 (t, C-1'), 78.5 (s, OC(CH₃)₃), 117.5 (t, C-7), 135.6 (d, C-6), 156.4 (s, NHCO) ppm; IR (KBr): $\bar{\nu} = 3,438, 3,353$ (N–H), 1,718 (C=O) cm⁻¹; MS (FAB pos.): *m*/*z* (%) = 415 (100) [(M + H)⁺]; HRMS (C₂₂H₄₇N₂O₃Si): calcd. 415.3356, found 415.3352.

Benzyl (4S,5S,2'S) and (4S,5R,2'S)-5-[1-(tert-butyldiphenylsilyloxy)-2-propylamino]-2-methyloct-7-en-4-ylcarbamate (**21a**, **21b**, $C_{36}H_{50}N_2O_3Si$)

Aldimine **5** (1.09 g, 2.00 mmol), 262 mg Zn (4.00 mmol), 76 mg CeCl₃·7H₂O (0.20 mmol), and 331 mm³ allyl bromide (3.80 mmol) were reacted according to GP 8 in 5 cm³ THF within 16 h. Chromatography (hexanes–EtOAc 6:1) yielded 180 mg adduct **21a** (0.31 mmol, 15%) and 135 mg adduct **21b** (0.23 mmol, 12%) as colourless oils.

21a: $R_{\rm f} = 0.41$ (hexanes-EtOAc 6:1); $[\alpha]_{\rm D}^{20} = -6.5 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.79, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.90$ (d, ${}^{3}J = 6.6$ Hz, 3H, CHCH₃), 0.91 (d, ${}^{3}J = 6.5$ Hz, 3H, CHCH₃), 0.92 (d, ${}^{3}J = 6.4$ Hz, 3H, CHCH₃), 1.05 (s, 9H, C(CH₃)₃), 1.24 (ddd, ${}^{2}J = 13.7$ Hz, ${}^{3}J = 8.7$ Hz, ${}^{3}J = 5.3$ Hz, 1H, 3-H_a), 1.37 (ddd, ${}^{2}J =$ 13.8 Hz, ${}^{3}J = 9.4$ Hz, ${}^{3}J = 5.5$ Hz, 1H, 3-H_b), 1.45 (bs, 1H, CHNHCH), 1.60 (φ -doct, ${}^{3}J = 8.2$ Hz, ${}^{3}J = 6.2$ Hz, 1H, 2-H), 2.12 (φ -t, ${}^{3}J = 7.0$ Hz, 2H, 6-H₂), 2.52 (td, ${}^{3}J = 6.9$ Hz, ${}^{3}J = 1.9$ Hz, 1H, 5-H), 2.82 (φ -quintd, ${}^{3}J = 6.4$ Hz, ${}^{3}J = 4.0$ Hz, 1H, 2'-H), 3.40 (dd, ${}^{2}J =$ 10.0 Hz, ${}^{3}J = 6.5$ Hz, 1H, 1'-H_a), 3.57 (dd, ${}^{2}J = 9.9$ Hz, ${}^{3}J = 4.2 \text{ Hz}, 1 \text{H}, 1' \text{-H}_{b}, 3.75 \text{ (tdd, } {}^{3}J = 9.5 \text{ Hz},$ ${}^{3}J = 5.2$ Hz, ${}^{3}J = 1.7$ Hz, 1H, 4-H), 4.93 (d, ${}^{3}J = 9.7$ Hz, 1H, NHCO), 5.03 (dd, ${}^{3}J = 10.2$ Hz, ${}^{2}J = 2.1$ Hz, 1H, 8-H_{cis}), 5.07 (dd, ${}^{3}J = 17.0$ Hz, ${}^{2}J = 1.8$ Hz, 1H, 8-H_{trans}), 5.08 (d, ${}^{2}J = 12.3$ Hz, 1H, $CH_{a}H_{b}Ph$), 5.11 (d, $^{2}J = 12.3$ Hz, 1H, CH_aH_bPh), 5.81 (ddt, $^{3}J = 17.2$ Hz, ${}^{3}J = 10.1$ Hz, ${}^{3}J = 7.2$ Hz, 1H, 7-H), 7.26–7.45 (m, 11H, 3 Ph), 7.62–7.67 (m, 4H, 3 Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 18.0$ (q), 19.2 (s), 22.3 (q), 23.2 (q), 24.9 (d), 26.9 (g), 37.4 (t), 42.4 (t), 51.3 (d), 53.0 (d), 57.3 (d), 66.5 (t), 67.9 (t), 117.6 (t), 127.7 (d, 4 C), 128.0 (d), 128.0 (d, 2C), 128.5 (d), 129.6 (d), 129.7 (d), 133.5 (s), 133.6 (s), 134.8 (d), 135.2 (s), 135.5 (d), 135.6 (d, 2C), 135.6 (d, 2C), 156.3 (s) ppm; IR (KBr): $\overline{v} = 3,418, 3,336$ (N–H), 1,721 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 587 (97) $[(M + H)^+]$; HRMS (C₃₆H₅₁N₂O₃Si): calcd. 587.3669, found 587.3666.

21b: $R_{\rm f} = 0.36$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = +18.5 \times 10^{-1}$ deg cm² g⁻¹ (c = 0.74, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.85$ (d, ³J = 6.6 Hz, 3H, CH(CH₃)_a(CH₃)_b),

0.86 (d, ${}^{3}J = 6.5$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 1.05 (s, 9H, $C(CH_3)_3$, 1.06 (d, ${}^{3}J = 6.5$ Hz, 3H, 3'-H₃), 1.19 (ddd, ${}^{2}J = 13.3$ Hz, ${}^{3}J = 9.4$ Hz, ${}^{3}J = 4.8$ Hz, 1H, 3-H_a), 1.30 $(ddd, {}^{2}J = 13.6 \text{ Hz}, {}^{3}J = 9.6 \text{ Hz}, {}^{3}J = 5.5 \text{ Hz}, 1\text{H}, 3\text{-H}_{\text{b}}),$ 1.15-1.45 (m, 1H, CHNHCH), 1.47-1.61 (m, 1H, 2-H), 2.00 (dtt, ${}^{2}J = 13.8$ Hz, ${}^{3}J = 7.6$ Hz, ${}^{4}J = 1.1$ Hz, 1H, 6-H_a), 2.16 (dtt, ${}^{2}J = 13.6$ Hz, ${}^{3}J = 6.2$ Hz, ${}^{4}J = 1.2$ Hz, 1H, 6-H_b), 2.61 (ddd, ${}^{3}J = 7.9$ Hz, ${}^{3}J = 6.1$ Hz, ${}^{3}J = 2.0$ Hz, 1H, 5-H), 2.72–2.82 (m, 1H, 2-H), 3.45 (dd, $^{2}J = 9.8$ Hz, $^{3}J = 5.4$ Hz, 1H, 1'-H_a), 3.51 (dd, $^{2}J =$ 9.8 Hz, ${}^{3}J = 4.7$ Hz, 1H, 1'-H_b), 3.70 (tdd, ${}^{3}J = 9.6$ Hz, ${}^{3}J = 4.8$ Hz, ${}^{3}J = 2.0$ Hz, 1H, 4-H), 4.99–5.08 (m, 3H, 8-H₂, NHCO), 5.07 (d, ${}^{2}J = 12.6$ Hz, 1H, CH_aH_bPh), 5.10 (d, ${}^{2}J = 12.6$ Hz, 1H, CH₂H_bPh), 5.77 (dddd, ${}^{3}J =$ 16.8 Hz, ${}^{3}J = 10.5$ Hz, ${}^{3}J = 7.9$ Hz, ${}^{3}J = 6.5$ Hz, 1H, 7-H), 7.28–7.45 (m, 11H, 3 Ph), 7.63–7.70 (m, 4H, 3 Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 18.1$ (q), 19.3 (s), 22.2 (q), 23.3 (q), 24.9 (d), 26.9 (q), 37.9 (t), 42.2 (t), 51.6 (d), 53.3 (d), 57.1 (d), 66.5 (t), 68.6 (t), 117.6 (t), 127.8 (d, 4 C), 128.0 (d), 128.1 (d, 2C), 128.5 (d, 2C), 129.6 (d), 129.7 (d), 133.7 (s, 2C), 135.6 (d, 4 C), 135.7 (d), 136.9 (s), 156.3 (s) ppm; IR (KBr): $\overline{v} = 3,412, 3,339$ (N–H), 1,720 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 587 (100) $[(M + H)^+]$; HRMS (C₃₆H₅₁N₂O₃Si): calcd. 587.3669, found 587.3666.

Benzyl (3S,4S,2'S) and (3S,4R,2'S)-4-[1-(tert-butyldiphe-nylsilyloxy)-2-propylamino]-2-methylhept-6-en-3-ylcarba-mate (**22a**,**22b**, C₃₅H₄₈N₂O₃Si)

Aldimine **6** (5.55 g, 10.5 mmol), 1.37 g Zn (20.9 mmol), 398 mg CeCl₃·7H₂O (1.05 mmol), and 1.73 cm³ allyl bromide (19.9 mmol) were reacted according to GP 8 in 20 cm³ THF within 16 h. Chromatography (hexanes–Et₂O 5:1) yielded 3.07 g adduct **22a** (5.36 mmol, 51%) and 493 mg adduct **22b** (0.86 mmol, 8%) as colourless oils.

22a: $R_{\rm f} = 0.37$ (hexanes-EtOAc 6:1); $[\alpha]_{\rm D}^{20} = -7.8 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.77, CHCl₃); ¹H NMR (400 MHz, $CDCl_3$): $\delta = 0.90$ (d, ${}^{3}J = 6.4$ Hz, 3H, 3'-H₃), 0.91 (d, ${}^{3}J = 6.7$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.91 (d, ${}^{3}J = 6.7$ Hz, 3H, H(CH₃)_a(CH₃)_b), 1.04 (s, 9H, C(CH₃)₃), 1.15–1.60 (bs, 1H, CHNHCH), 1.70 (dsept, ${}^{3}J = 9.6$ Hz, ${}^{3}J = 6.7$ Hz, 1H, 2-H), 2.05 (dddt, ${}^{2}J = 13.6$ Hz, ${}^{3}J = 8.3$ Hz, ${}^{3}J = 7.3$ Hz, ${}^{4}J = 1.2$ Hz, 1H, 5-H_a), 2.15-2.24 (m, 1H, 5-H_b), 2.73 (ddd, ${}^{3}J = 8.4$ Hz, ${}^{3}J = 4.9$ Hz, ${}^{3}J = 1.6$ Hz, 1H, 4-H), 2.83 (φ -quintd, ${}^{3}J = 6.4$ Hz, ${}^{3}J = 4.2$ Hz, 1H, 2'-H), 3.28 (ddd, ${}^{3}J = 10.2$ Hz, ${}^{3}J =$ 9.6 Hz, ${}^{3}J = 1.6$ Hz, 1H, 3-H), 3.40 (dd, ${}^{2}J = 9.9$ Hz, ${}^{3}J = 6.7$ Hz, 1H, 1'-H_a), 3.56 (dd, ${}^{2}J = 9.9$ Hz, ${}^{3}J = 4.3$ Hz, 1H, 1'-H_b), 5.00–5.11 (m, 3H, 7-H, NHCO), 5.09 (d. ${}^{2}J = 12.3$ Hz, 1H, CH₂H_bPh), 5.13 (d. ${}^{2}J =$ 12.2 Hz, 1H, CH_aH_bPh), 5.79 (ddt, ${}^{3}J = 17.2$ Hz, ${}^{3}J = 10.1$ Hz, ${}^{3}J = 7.2$ Hz, 1H, 6-H), 7.27–7.44 (m, 11H, 3 Ph), 7.62–7.67 (m, 4H, 3 Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 17.7$ (q), 19.2 (s), 19.5 (q), 20.0 (q), 26.9 (q), 30.9 (d), 37.7 (t), 52.5 (d), 54.1 (d), 58.9 (d), 66.5 (t), 68.2 (t), 117.6 (t), 127.7 (d, 4 C), 128.0 (d), 128.0 (d, 2C), 128.5 (d, 2C), 129.6 (d), 129.7 (d), 133.5 (s), 133.5 (s), 135.5 (d), 135.6 (d, 2C), 135.7 (2d), 137.0 (s), 156.8 (s) ppm; IR (KBr): $\bar{\nu} = 3,423$, 3,300 (N–H), 1,726 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 573 (100) [(M + H)⁺]; HRMS (C₃₅H₄₉N₂O₃Si): calcd. 573.3512, found 573.3515.

22b: $R_{\rm f} = 0.30$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = +20.0 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.80, CHCl₃); ¹H NMR (400 MHz, $CDCl_3$): $\delta = 0.84$ (d, ${}^{3}J = 6.7$ Hz, 3H, $H(CH_3)_a$ $(CH_3)_{\rm b}$, 0.87 (d, ${}^{3}J = 6.7$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 1.05 (s, 9H, C(CH₃)₃), 1.07 (d, ${}^{3}J = 6.4$ Hz, 3H, 3'-H₃), 1.26 (bs, 1H, CHNHCH), 1.59 (dsept, ${}^{3}J = 9.6$ Hz, ${}^{3}J =$ 6.7 Hz, 1H, 2-H), 2.00-2.18 (m, 2H, 5-H₂), 2.69 (qdd, ${}^{3}J = 6.4$ Hz, ${}^{3}J = 5.7$ Hz, ${}^{3}J = 4.3$ Hz, 1H, 2'-H), 2.78 (td, ${}^{3}J = 6.7$ Hz, ${}^{3}J = 1.7$ Hz, 1H, 4-H), 3.17 (td, ${}^{3}J = 9.8$ Hz, ${}^{3}J = 1.7$ Hz, 1H, 3-H), 3.43 (dd, ${}^{2}J =$ 9.9 Hz, ${}^{3}J = 5.7$ Hz, 1H, 1'-H_a), 3.50 (dd, ${}^{2}J = 9.9$ Hz, ${}^{3}J = 4.4$ Hz, 1H, 1'-H_b), 5.00–5.08 (m, 2H, 7-H₂), 5.08 (d, $^{2}J = 12.4$ Hz, 1H, CH_aH_bPh), 5.12 (d, $^{2}J = 12.2$ Hz, 1H, CH_a H_b Ph), 5.23 (d, ${}^{3}J = 10.0$ Hz, 1H, NHCO), 5.75 (dddd, ${}^{3}J = 17.0$ Hz, ${}^{3}J = 10.2$ Hz, ${}^{3}J = 7.8$ Hz, ${}^{3}J =$ 6.7 Hz, 1H, 6-H), 7.28-7.44 (m, 11H, 3 Ph), 7.63-7.69 (m, 4H, 3 Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 18.6$ (q), 19.3 (s), 19.7 (q), 20.0 (q), 26.9 (q), 30.7 (d), 38.9 (t), 53.7 (d), 54.3 (d), 59.9 (d), 66.5 (t), 68.4 (t), 117.8 (t), 127.7 (d, 4 C), 128.0 (d), 128.1 (d, 2C), 128.5 (d, 2C), 129.7 (2d), 133.7 (s, 2C), 135.3 (d), 135.6 (4d), 137.0 (s), 156.8 (s) ppm; IR (KBr): $\overline{v} = 3,418, 3,341$ (N–H), 1,726 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 573 (99) [(M + H)⁺]; HRMS (C₃₅H₄₉N₂O₃Si): calcd. 573.3512, found 573.3510.

tert-Butyl (3*S*,4*S*,2'*S*) and (3*S*,4*R*,2'*S*)-4-[1-(*tert-butyldiphenylsilyloxy*)-3-methyl-2-butylamino]-2-methylhept-6en-3-ylcarbamate (**23a**, **23b**, C₃₄H₅₄N₂O₃Si)

Aldimine **7** (1.57 g, 3.00 mmol), 392 mg Zn (6.00 mmol), 114 mg CeCl₃·7H₂O (0.30 mmol), and 496 mm³ allyl bromide (5.70 mmol) were reacted according to GP 8 in 5 cm³ THF within 16 h. Chromatography (hexanes–Et₂O 8:1 \rightarrow 5:1) yielded 416 mg adduct **23a** (0.73 mmol, 24%) and 552 mg adduct **23b** (0.97 mmol, 32%) as colourless oils.

23a: $R_f = 0.52$ (hexanes–EtOAc 6:1); $[\alpha]_D^{20} = -17.3 \times 10^{-1} \text{ deg cm}^2 \text{g}^{-1} (c = 0.82, \text{CHCl}_3)$; ¹H NMR (400 MHz, CDCl}3): $\delta = 0.79$ (d, ³J = 6.9 Hz, 3H, CHC H_3), 0.82 (d, ³J = 7.0 Hz, 3H, CHC H_3), 0.87 (d, ³J = 6.6 Hz, 3H, CHC H_3), 0.91 (d, ³J = 6.7 Hz, 3H, CHC H_3), 1.06 (s, 9H, SiC(CH_3)_3), 1.10–1.40 (bs, 1H, CHNHCH), 1.45 (s, 9H, OC(CH_3)_3), 1.72 (dsept, ³J = 9.3 Hz, ³J = 6.7 Hz, 1H, 2-H), 1.80 (septd, ³J = 7.0 Hz, ³J = 4.3 Hz, 1H, 3'-H), 2.02 (ddd, ²J = 13.6 Hz, ³J = 8.4 Hz, ³J = 7.6 Hz, 1H, 5-H_a), 2.16 (ddd, ²J = 13.3 Hz, ³J = 6.8 Hz, ³J = 4.8 Hz, 1H, 5-H_b), 2.47 (dt, ³J = 6.5 Hz, ³J = 4.5 Hz, 1H, 2'-H), 2.68

(ddd, ${}^{3}J = 8.7$ Hz, ${}^{3}J = 4.7$ Hz, ${}^{3}J = 1.6$ Hz, 1H, 4-H), 3.18 (td, ${}^{3}J = 10.0$ Hz, ${}^{3}J = 1.6$ Hz, 1H, 3-H), 3.50 (dd, $^{2}J = 10.3$ Hz, $^{3}J = 6.5$ Hz, 1H, 1'-H_a), 3.62 (dd, $^{2}J =$ 10.3 Hz, ${}^{3}J = 4.6$ Hz, 1H, 1'-H_b), 4.83 (d, ${}^{3}J = 10.2$ Hz, 1H, NHCO), 5.00 (dd, ${}^{3}J = 10.2$ Hz, ${}^{2}J = 2.2$ Hz, 1H, 7-H_{cis}), 5.02 (dd, ${}^{3}J = 17.1$ Hz, ${}^{2}J = 1.8$ Hz, 1H, 7-H_{trans}), 5.75 (ddt, ${}^{3}J = 17.3$ Hz, ${}^{3}J = 10.2$ Hz, ${}^{3}J = 7.2$ Hz, 1H, 6-H), 7.36–7.47 (m, 6H, 2 Ph), 7.63–7.69 (m, 4H, 2 Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 18.0$ (q), 18.8 (q), 19.2 (s), 19.6 (q), 20.2 (q), 26.9 (q), 28.5 (d), 28.9 (q), 30.3 (d), 38.0 (t), 54.7 (d), 58.7 (d), 62.5 (d), 63.3 (t), 78.5 (s), 117.4 (t), 127.7 (d, 4 C), 129.7 (d), 129.7 (d), 133.5 (2s), 135.6 (d), 135.7 (2d), 135.7 (d, 2C), 156.3 (s) ppm; IR (KBr): $\overline{v} = 3,437$ (N–H), 1,719 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 567 (100) [(M + H)⁺]; HRMS (C₃₄H₅₅N₂O₃Si): calcd. 567.3982, found 567.3979.

23b: $R_{\rm f} = 0.52$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = -1.9 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.84, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.78$ (d, ${}^{3}J = 6.6$ Hz, 3H, CHCH₃), 0.82 (d, ${}^{3}J = 6.7$ Hz, 3H, CHCH₃), 0.85 (d, ${}^{3}J = 7.5$ Hz, 3H, CHCH₃), 0.87 (d, ${}^{3}J = 6.9$ Hz, 3H, CHCH₃), 1.05 (s, 9H, SiC(CH₃)₃), 1.42 (s, 9H, OC(CH₃)₃), 1.63 (dsept, ${}^{3}J = 9.1$ Hz, ${}^{3}J = 6.7$ Hz, 1H, 2-H), 1.92 (septd, ${}^{3}J = 6.9$ Hz, ${}^{3}J = 4.3$ Hz, 1H, 3'-H), 2.00–2.15 (m, 3H, 5-H₂, CHNHCH), 2.45 (dt, ${}^{3}J = 5.6$ Hz, ${}^{3}J = 4.6$ Hz, 1H, 2'-H), 2.73 (ddd, ${}^{3}J = 7.6$ Hz, ${}^{3}J = 5.3$ Hz, ${}^{3}J = 2.4$ Hz, 1H, 4-H), 3.15 (ddd, ${}^{3}J = 9.8$ Hz, ${}^{3}J =$ 9.0 Hz, ${}^{3}J = 2.3$ Hz, 1H, 3-H), 3.50 (dd, ${}^{2}J = 10.5$ Hz, ${}^{3}J = 4.9$ Hz, 1H, 1-H_a), 3.55 (dd, ${}^{2}J = 10.5$ Hz, ${}^{3}J = 5.8$ Hz, 1H, 1-H_b), 4.87 (d, ${}^{3}J = 10.0$ Hz, 1H, NHCO), 5.01–5.08 (m, 2H, 7-H₂), 5.77 (ddt, ${}^{3}J =$ 16.7 Hz, ${}^{3}J = 9.4$ Hz, ${}^{3}J = 7.2$ Hz, 1H, 6-H), 7.36–7.46 (m, 6H, 2 Ph), 7.64–7.69 (m, 4H, 2 Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 18.3$ (s, SiC(CH₃)₃), 19.0 (q, CHCH₃), 19.2 (q, CHCH₃), 19.3 (q, CHCH₃), 20.1 (q, CHCH₃), 26.9 (q, SiC(CH₃)₃), 28.4 (q, OC(CH₃)₃), 29.3 (d, C-3'), 30.3 (d, C-2), 37.7 (t, C-5), 54.7 (d, C-4), 58.4 (d, C-2'), 61.8 (d, C-3), 64.3 (t, C-1'), 78.5 (s, OC(CH₃)₃), 117.5 (t, C-7), 127.7 (d, 4C, Ph), 129.6 (d, Ph), 129.7 (d, Ph), 133.6 (2s, Ph), 135.4 (d, C-2'), 135.6 (4d, Ph), 156.4 (s, NHCO) ppm; IR (KBr): $\overline{v} = 3,437$ (N–H), 1,718 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 567 (94) $[(M + H)^+]$; HRMS (C₃₄H₅₅N₂O₃Si): calcd. 567.3982, found 567.3985.

tert-Butyl (3S,4S,2'S) and (3S,4R,2'S)-4-[1-(*tert-butyldi-methylsilyloxy*)-3-phenyl-2-propylamino]-2-methylhept-6en-3-ylcarbamate (**24a**, **24b**, C₂₈H₅₀N₂O₃Si)

Aldimine 8 (247 mg, 0.55 mmol), 72 mg Zn (1.10 mmol), 21 mg CeCl₃·7H₂O (0.06 mmol), and 91 mm³ allyl bromide (1.05 mmol) were reacted according to GP 8 in 3 cm³ THF within 16 h. Chromatography (hexanes–Et₂O 8:1 \rightarrow 6:1) yielded 60 mg adduct **24a** (0.12 mmol, 22%) and 60 mg adduct **24b** (0.12 mmol, 22%) as colourless oils.

24a: $R_{\rm f} = 0.44$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = -40.6 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.61, CHCl₃); ¹H NMR (400 MHz, $CDCl_3$): $\delta = 0.03$ (s, 3H, SiCH₃), 0.03 (s, 3H, SiCH₃), 0.78 (d, ${}^{3}J = 6.6 \text{ Hz}$, 3H, CH(CH₃)_a(CH₃)_b), 0.83 (d, ${}^{3}J =$ 6.6 Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.91 (s, 9H, SiC(CH₃)₃), 1.26 (bs, 1H, CHNHCH), 1.36-1.45 (m, 1H, 2-H), 1.44 (s, 9H, OC(CH₃)₃), 2.03–2.19 (m, 2H, 5-H₂), 2.60 (dd, ${}^{2}J = 13.4$ Hz, ${}^{3}J = 7.4$ Hz, 1H, 3'-H_a), 2.65 (dd, $^{2}J = 13.6$ Hz, $^{3}J = 6.6$ Hz, 1H, 3'-H_b), 2.75–2.81 (m, 2H, 2'-H, 4-H), 3.09 (td, ${}^{3}J = 9.9$ Hz, ${}^{3}J = 1.7$ Hz, 1H, 3-H), 3.40 (dd, ${}^{2}J = 9.9$ Hz, ${}^{3}J = 4.7$ Hz, 1H, 1'-H_a), 3.52 (dd, $^{2}J = 9.9$ Hz, $^{3}J = 4.1$ Hz, 1H, 1'-H_b), 4.77 (d, $^{3}J =$ 10.1 Hz, 1H, NHCO), 5.03-5.11 (m, 2H, 7-H₂), 5.82 $(ddt, {}^{3}J = 17.3 \text{ Hz}, {}^{3}J = 10.1 \text{ Hz}, {}^{3}J = 7.2 \text{ Hz}, 1\text{H}, 6\text{-H})$ 7.14–7.35 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = -5.5$ (q, SiCH₃), -5.4 (q, SiCH₃), 18.2 (s, SiC (CH₃)₃), 19.5 (q, CHCH₃), 20.0 (q, CHCH₃), 25.9 (q, SiC(CH₃)₃), 28.5 (q, OC(CH₃)₃), 30.5 (d, C-2), 38.2 (t, C-5), 39.1 (t, C-3'), 54.6 (d, C-4), 59.8 (d, C-2'), 58.6 (d, C-3), 64.2 (t, C-1'), 78.3 (s, OC(CH₃)₃), 117.5 (t, C-7), 126.0 (d, Ph), 128.2 (d, 2C, Ph), 129.3 (d, 2C, Ph), 135.5 (d, C-6), 139.8 (s, Ph), 156.2 (s, NHCO) ppm; IR (KBr): $\overline{v} = 3,426$ (N–H), 1,718 (C=O) cm⁻¹; MS (FAB pos.): m/z $(\%) = 491 (43) [(M + H)^+];$ HRMS $(C_{28}H_{51}N_2O_3Si):$ calcd. 491.3669, found 491.3665.

24b: $R_{\rm f} = 0.35$ (hexanes-EtOAc 6:1); $[\alpha]_{\rm D}^{20} = +4.0 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.91, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.02$ (s, 3H, SiCH₃), 0.02 (s, 3H, SiCH₃), 0.86 (d, ${}^{3}J = 6.7$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.90 (d, ${}^{3}J = 6.6$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.91 (s, 9H, SiC(CH₃)₃), 1.47 (s, 9H, OC(CH₃)₃), 1.60 (bs, 1H, CHNHCH), 1.86 (φ -oct, ${}^{3}J = 6.6$ Hz, 1H, 2-H), 2.13 (dt, $^{2}J = 13.9$ Hz, $^{3}J = 7.0$ Hz, 1H, 5-H_a), 2.26 (ddd, $^{2}J = 13.6$ Hz, $^{3}J = 6.6$ Hz, $^{3}J = 5.4$ Hz, 1H, 5-H_b), 2.60 $(dd, {}^{2}J = 13.3 \text{ Hz}, {}^{3}J = 8.6 \text{ Hz}, 1\text{H}, 3'-\text{H}_{a}), 2.73 (dd,$ ${}^{2}J = 13.3$ Hz, ${}^{3}J = 5.3$ Hz, 1H, 3'-H_b), 2.77–2.84 (m, 1H, 4-H), 2.92–3.01 (m, 1H, 2'-H), 3.34 (dd, ${}^{2}J = 10.0$ Hz, ${}^{3}J = 5.2$ Hz, 1H, 1'-H_a), 3.50 (dd, ${}^{2}J = 10.0$ Hz, ${}^{3}J = 3.9$ Hz, 1H, 1'-H_b), 3.44–3.51 (m, 1H, 3-H), 4.55 (d, ${}^{3}J = 10.5$ Hz, 1H, NHCO), 5.09 (ddd, ${}^{3}J = 10.1$ Hz, $^{2}J = 2.1$ Hz, $^{4}J = 1.1$ Hz, 1H, 7-H_{cis}), 5.14 (ddd, ${}^{3}J = 17.1$ Hz, ${}^{2}J = 2.0$ Hz, ${}^{4}J = 1.5$ Hz, 1H, 7-H_{trans}), 5.88 (ddt, ${}^{3}J = 17.2$ Hz, ${}^{3}J = 10.1$ Hz, ${}^{3}J = 7.1$ Hz, 1H, 6-H), 7.17–7.32 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = -5.5$ (q, SiCH₃), -5.4 (q, SiCH₃), 18.2 (q, CH(CH₃)_a(CH₃)_b), 18.2 (s, SiC(CH₃)₃), 20.7 (q, CH(CH₃)_a (CH₃)_b), 25.9 (q, SiC(CH₃)₃), 28.5 (q, OC(CH₃)₃), 28.8 (d, C-2), 35.4 (t, C-5), 38.9 (t, C-3'), 55.7 (d, C-4), 57.2 (d, C-3), 58.4 (d, C-2'), 63.4 (t, C-1'), 78.8 (s, $OC(CH_3)_3$), 117.4 (t, C-7), 126.0 (d, Ph), 128.2 (d, 2C, Ph), 129.4 (d, 2C, Ph), 135.8 (d, C-6), 139.7 (s, Ph), 156.3 (s, NHCO) ppm; IR (KBr): $\overline{\nu} = 3,357$ (N–H), 1,702 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 491 (74) [(M + H)⁺]; HRMS (C₂₈H₅₁N₂O₃Si): calcd. 491.3669, found 491.3672.

Benzyl (4*S*,5*S*,2'*S*) and (4*S*,5*R*,2'*S*)-5-[1-(tert-butyldimethylsilyloxy)-3-phenyl-2-propylamino]-2-methyloct-7en-4-ylcarbamate (**25a**, **25b**, C₃₂H₅₀N₂O₃Si)

Aldimine **9** (6.21 g, 12.5 mmol), 1.63 g Zn (25.0 mmol), 473 mg CeCl₃·7H₂O (1.25 mmol), and 1.79 cm³ allyl bromide (23.8 mmol) were reacted according to GP 8 in 10 cm³ THF within 16 h. Chromatography (hexanes–EtOAc 10:1) yielded 1.86 g adduct **25a** (3.46 mmol, 28%) and 1.16 g adduct **25b** (2.16 mmol, 17%) as colourless oils.

25a: $R_{\rm f} = 0.53$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = -18.0 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ ($c = 1.00, \text{ CHCl}_3$); ¹H NMR (500 MHz, CDCl₃): $\delta = 0.03$ (2s, 6H, Si(CH₃)₂), 0.82 (d, ³J = 6.6 Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.84 (d, ${}^{3}J = 6.6$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.91 (s, 9H, C(CH₃)₃), 1.05 (ddd, ${}^{2}J = 13.7$ Hz, ${}^{3}J = 9.1$ Hz, ${}^{3}J = 5.2$ Hz, 1H, 3-H_a), 1.10 $(ddd, {}^{2}J = 13.4 \text{ Hz}, {}^{3}J = 9.4 \text{ Hz}, {}^{3}J = 5.5 \text{ Hz}, 1\text{H}, 3\text{-H}_{\text{h}}),$ 1.31 (bs, 1H, CHNHCH), 1.47 (dsext, ${}^{3}J = 8.7$ Hz, ${}^{3}J =$ 6.7 Hz, 1H, 2-H), 2.06 (dt, ${}^{2}J = 14.1$ Hz, ${}^{3}J = 7.4$ Hz, 1H, $6-H_a$, 2.13 (dt, ${}^{2}J = 13.7$ Hz, ${}^{3}J = 6.8$ Hz, 1H, $6-H_b$), 2.60 (ddd, ${}^{3}J = 7.2$ Hz, ${}^{3}J = 5.6$ Hz, ${}^{3}J = 2.2$ Hz, 1H, 5-H), 2.63 (dd, ${}^{2}J = 12.9$ Hz, ${}^{3}J = 7.0$ Hz, 1H, 3'-H_a), 2.66 (dd, $^{2}J = 13.3$ Hz, $^{3}J = 6.8$ Hz, 1H, 3'-H_b), 2.77 (tt, ${}^{3}J = 7.1$ Hz, ${}^{3}J = 3.9$ Hz, 1H, 2'-H), 3.40 (dd, ${}^{2}J = 10.0$ Hz, ${}^{3}J = 4.0$ Hz, 1H, 1'-H_a), 3.52 (dd, ${}^{2}J = 10.0$ Hz, ${}^{3}J = 4.1$ Hz, 1H, 1'-H_b), 3.64 (tdd, ${}^{3}J = 9.6$ Hz, ${}^{3}J = 5.1$ Hz, ${}^{3}J = 1.7$ Hz, 1H, 4-H), 4.92 (d, ${}^{3}J = 9.5$ Hz, 1H, NHCO), 5.05 (dd, ${}^{3}J = 10.3$ Hz, ${}^{2}J = 1.6$ Hz, 1H, 8-H_{cis}), 5.06 (d, ${}^{2}J = 12.5$ Hz, 1H, OCH_aH_bPh), 5.08 (dd, ${}^{3}J = 17.3$ Hz, ${}^{2}J = 1.6$ Hz, 1H, 8-H_{trans}), 5.09 (d, $^{2}J = 12.5$ Hz, 1H, OCH_aH_bPh), 5.80 (ddt, $^{3}J = 17.2$ Hz, ${}^{3}J = 10.1$ Hz, ${}^{3}J = 7.2$ Hz, 1H, 7-H), 7.11–7.46 (m, 10H, 2 Ph) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = -5.4$ $(q, Si(CH_3)_a(CH_3)_b), -5.4$ $(q, Si(CH_3)_a(CH_3)_b), 18.3$ (s, C(CH₃)₃), 22.2 (q, CH(CH₃)_a(CH₃)_b), 23.2 (q, CH(CH₃)_a (CH₃)_b), 24.9 (d, C-2), 26.0 (q, C(CH₃)₃), 37.7 (t, C-6), 39.4 (t, C-3'), 42.2 (t, C-3), 51.5 (d, C-4), 57.6 (d, C-5), 60.2 (d, C-2'), 63.5 (t, C-1'), 66.4 (t, OCH₂Ph), 117.2 (t, C-8), 126.1 (d, Ph), 128.0 (d, 3C, Ph), 128.3 (d, 2C, Ph), 128.5 (d, 2C, Ph), 129.5 (2d, Ph), 135.6 (d, C-7), 137.0 (s, Ph), 140.0 (s, Ph), 156.3 (s, NHCO) ppm; IR (DRIFT): $\overline{v} = 3,412, 3,338$ (N–H), 1,721 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 539 $(76) [(M + H)^+];$ HRMS (C₃₂H₅₁N₂O₃Si): calcd. 539.3669, found 539.3671.

25b: $R_{\rm f} = 0.43$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = +$ 17.6 × 10⁻¹ deg cm² g⁻¹ (c = 0.65, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.01$ (s, 3H, Si(CH₃)_a(CH₃)_b), 0.02 (s, 3H, Si(CH₃)_a(CH₃)_b), 0.87 (d, ³J = 6.6 Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.87 (d, ³J = 6.6 Hz, 3H, Si(CH₃)_a (CH₃)_b), 0.89 (s, 9H, C(CH₃)₃), 1.03–1.25 (m, 2H, 3-H₂),

1.48 (bs, 1H, CHNHCH), 1.50-1.60 (m, 1H, 2-H), 1.97-2.08 (m, 1H, 6-H_a), 2.24 (dtt, ${}^{2}J = 13.9$ Hz, ${}^{3}J = 6.8$ Hz, ${}^{3}J = 1.5$ Hz, 1H, 6-H_b), 2.53 (dd, ${}^{2}J = 13.5$ Hz, ${}^{3}J = 7.3$ Hz, 1H, 3'-H_a), 2.62 (dd, ${}^{2}J = 13.5$ Hz, ${}^{3}J = 6.4$ Hz, 1H, 3'-H_b), 2.73 (td, ${}^{3}J = 7.1$ Hz, ${}^{3}J = 3.2$ Hz, 1H, 5-H), 2.83–2.91 (m, 1H, 2'-H), 3.35 (dd, ${}^{2}J = 10.0$ Hz, ${}^{3}J = 6.2$ Hz, 1H, 1'-H_a), 3.49 (dd, ${}^{2}J = 10.0$ Hz, ${}^{3}J = 4.2$ Hz, 1H, 1'-H_b), 3.70 (tt, ${}^{3}J = 10.0$ Hz, ${}^{3}J = 3.2$ Hz, 1H, 4-H), 4.76 (d, ${}^{3}J = 9.3$ Hz, 1H, NHCO), 4.91 (dd, ${}^{3}J =$ 17.2 Hz, ${}^{2}J = 1.6$ Hz, 1H, 8-H_{trans}), 4.96 (dd, ${}^{3}J = 10.2$ Hz, ${}^{2}J = 1.9$ Hz, 1H, 8-H_{cis}), 5.05 (d, ${}^{2}J = 12.2$ Hz, 1H, OCH_aH_bPh), 5.09 (d, ²J = 11.7 Hz, 1H, OCH_aH_bPh), 5.79 (ddt, ${}^{3}J = 17.2$ Hz, ${}^{3}J = 9.9$ Hz, ${}^{3}J = 7.3$ Hz, 1H, 7-H), 7.11–7.37 (m, 10H, 2 Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = -5.5$ (q, Si(CH₃)_a(CH₃)_b), -5.4 (q, Si(CH₃)_a $(CH_3)_{\rm b}$, 18.2 (s, $C(CH_3)_3$), 21.6 (q, $CH(CH_3)_a(CH_3)_b$), 24.0 (q, CH(CH₃)_a(CH₃)_b), 24.5 (d, C-2), 25.9 (q, C(CH₃)₃), 37.2 (t, C-6), 37.6 (t, C-3), 39.3 (t, C-3'), 51.3 (d, C-4), 58.2 (d, C-5), 59.9 (d, C-2'), 64.6 (t, C-1'), 66.4 (t, OCH₂Ph), 117.2 (t, C-8), 126.0 (d, Ph), 127.9 (d, 3C, Ph), 128.3 (d, 2C, Ph), 128.4 (d, 2C, Ph), 129.4 (2d, Ph), 135.4 (d, C-7), 136.9 (s, Ph), 139.7 (s, Ph), 156.1 (s, NHCO) ppm; IR (KBr): $\overline{v} = 3,402, 3,337$ (N–H), 1,722 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 539 (76) [(M + H)⁺]; HRMS (C₃₂H₅₁N₂O₃Si): calcd. 539.3669, found 539.3666.

Benzyl (4S,5S,2'S) and (4S,5R,2'S)-5-[1-(tert-butyldimethylsilyloxy)-2-propylamino]-2-methyloct-7-en-4-ylcarbamate (**26a**, **26b**, $C_{26}H_{46}N_2O_3S_1$)

Aldimine **10** (2.88 g, 6.86 mmol), 897 mg Zn (13.7 mmol), 256 mg CeCl₃·7H₂O (0.69 mmol), and 0.98 cm³ allyl bromide (13.0 mmol) were reacted according to GP 8 in 10 cm³ THF within 16 h. Chromatography (hexanes–Et₂O 9:1 \rightarrow 5:1) yielded 619 mg adduct **26a** (1.34 mmol, 19%) and 428 mg adduct **26b** (0.92 mmol, 13%) as colourless oils.

26a: $R_{\rm f} = 0.45$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = -4.6 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.62, CHCl₃); ¹H NMR (400 MHz, $CDCl_3$): $\delta = 0.04 (2s, 6H, Si(CH_3)_2), 0.89 (s, 9H, C(CH_3)_3),$ 0.89 (d, ${}^{3}J = 6.5$ Hz, 3H, CHCH₃), 0.91 (d, ${}^{3}J = 7.0$ Hz, 3H, CHC H_3), 0.93 (d, ${}^{3}J = 6.6$ Hz, 3H, CHC H_3), 1.28 (ddd, ${}^{2}J = 13.7$ Hz, ${}^{3}J = 8.5$ Hz, ${}^{3}J = 5.0$ Hz, 1H, 3-H_a), 1.28 $(ddd, {}^{2}J = 13.6 \text{ Hz}, {}^{3}J = 9.4 \text{ Hz}, {}^{3}J = 5.5 \text{ Hz}, 1\text{H}, 3\text{-H}_{\text{h}}),$ 1.44 (bs, 1H, CHNHCH), 1.57 (φ -doct, ${}^{3}J = 8.8$ Hz, ${}^{3}J = 6.5$ Hz, 1H, 2-H), 2.11 (φ -t, ${}^{3}J = 7.0$ Hz, 2H, 6-H₂), 2.55 (td, ${}^{3}J = 6.7$ Hz, ${}^{3}J = 1.9$ Hz, 1H, 5-H), 2.77 $(\varphi$ -quintd, ${}^{3}J = 6.4$ Hz, ${}^{3}J = 3.9$ Hz, 1H, 2'-H), 3.32 (dd, $^{2}J = 9.8$ Hz, $^{3}J = 6.4$ Hz, 1H, 1'-H_a), 3.53 (dd, $^{2}J = 9.8$ Hz, ${}^{3}J = 4.1$ Hz, 1H, 1'-H_b), 3.75 (tdd, ${}^{2}J = 9.4$ Hz, ${}^{3}J = 5.1$ Hz, ${}^{3}J = 1.8$ Hz, 1H, 4-H), 4.97 (d, ${}^{3}J = 9.5$ Hz, 1H, NHCO), 5.05 (ddv, ${}^{2}J = 1.8$ Hz, 1H, 8-H_{cis}), 5.07 (d, $^{2}J = 12.2$ Hz, 1H, CH_aH_bPh), 5.05 (dd, $^{3}J = 17.2$ Hz, $^{2}J = 1.8$ Hz, 1H, 8-H_{trans}), 5.11 (d, $^{2}J = 12.3$ Hz, 1H, CH_a*H*_bPh), 5.82 (ddt, ³*J* = 17.3 Hz, ³*J* = 10.1 Hz, ³*J* = 7.2 Hz, 1H, 7-H), 7.26–7.37 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = -5.4$ (q, Si(CH₃)_a(CH₃)_b), -5.3 (q, Si(CH₃)_a(CH₃)_b), 18.6 (q, C-3'), 18.3 (s, *C*(CH₃)₃), 22.3 (q, CH(CH₃)_a(CH₃)_b), 23.3 (q, CH(CH₃)_a(CH₃)_b), 24.9 (d, C-2), 25.9 (q, C(CH₃)₃), 37.3 (t, C-6), 42.3 (t, C-3), 51.3 (d, C-4), 53.1 (d, C-2'), 57.4 (d, C-5), 66.4 (t, CH₂Ph), 66.8 (t, C-1'), 117.5 (t, C-8), 128.0 (d, 3C, Ph), 128.5 (2d, Ph), 135.5 (d, C-7), 136.9 (s, Ph), 156.3 (s, NHCO) ppm; IR (KBr): $\bar{\nu} = 3,436, 3,335$ (N–H), 1,723 (C=O) cm⁻¹; MS (FAB pos.): *m*/*z* (%) = 463 (100) [(M + H)⁺]; HRMS (C₂₆H₄₇N₂O₃Si): calcd. 463.3356, found 463.3354.

26b: $R_{\rm f} = 0.35$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = +37.9 \times$ $10^{-1} \deg \operatorname{cm}^2 \operatorname{g}^{-1}$ (c = 0.87, CHCl₃); ^{1}H NMR (400 MHz, CDCl₃): $\delta = 0.04$ (s, 3H, Si(CH₃)_a(CH₃)_b), 0.04 (s, 3H, Si(CH₃)_a(CH₃)_b), 0.83 (d, ${}^{3}J = 6.2$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.89 (s, 9H, C(CH₃)₃), 0.88–0.94 (m, 6H, CH(CH₃)_a(CH₃)_b, 3'-H₃), 1.15–1.22 (m, 2H, 3-H₂), 1.54 (bs, 1H, CHNHCH), 1.59-1.72 (m, 1H, 2-H), 1.95-2.09 (m, 1H, 6-H_a), 2.33 (dtt, ${}^{2}J = 13.9$ Hz, ${}^{3}J = 6.2$ Hz, ${}^{3}J = 1.5$ Hz, 1H, 6-H_b), 2.68–2.76 (m, 1H, 5-H), 2.78–2.88 (m, 1H, 2'-H), 3.40 (dd, ${}^{2}J = 9.8$ Hz, ${}^{3}J = 5.3$ Hz, 1H, 1'-H_a), 3.46 (dd, ${}^{2}J = 9.7$ Hz, ${}^{3}J = 4.9$ Hz, 1H, 1'-H_b), 3.72-3.82 (m, 1H, 4-H), 5.02-5.14 (m, 4H, 8-H₂, CH₂Ph), 5.28 (d. ${}^{3}J = 9.1$ Hz, 1H, NHCO), 5.73–5.86 (m. 1H, 7-H), 7.27–7.40 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = -5.4$ (q, Si(CH₃)_a(CH₃)_b), -5.4 (q, Si(CH₃)_a(CH₃)_b), 17.2 (q, C-3'), 18.2 (s, $C(CH_3)_3$), 21.6 (q, $CH(CH_3)_a$) (CH₃)_b), 24.0 (q, CH(CH₃)_a(CH₃)_b), 24.6 (d, C-2), 25.9 (q, C(CH₃)₃), 37.6 (t, C-3 or C-6), 37.8 (t, C-3 or C-6), 50.5 (d, C-4), 52.1 (d, C-2'), 57.2 (d, C-5), 66.3 (t, CH₂Ph), 67.5 (t, C-1'), 117.2 (t, C-8), 127.9 (d, 3C, Ph), 128.4 (d, 2C, Ph), 135.3 (d, C-7), 137.0 (s, Ph), 156.3 (s, NHCO) ppm; IR (KBr): $\overline{v} = 3,417, 3,332$ (N–H), 1,723 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 463 (100) [(M + H)⁺]; HRMS (C₂₆H₄₇N₂O₃Si): calcd. 463.3356, found 463.3354.

Benzyl (3S,4S,2'S) and (3S,4S,2'S)-4-[1-(tert-butyldimethylsilyloxy)-2-propylamino]-2-methylhept-6-en-3ylcarbamate (**27a**, **27b**, C₂₅H₄₄N₂O₃Si)

Aldimine **11** (5.10 g, 14.3 mmol), 1.87 g Zn (28.6 mmol), 533 mg CeCl₃·7H₂O (1.43 mmol), and 2.36 cm³ allyl bromide (27.2 mmol) were reacted according to GP 8 in 20 cm³ THF within 16 h. Chromatography (hexanes–Et₂O 8:1 \rightarrow 3:1) yielded 1.85 g adduct **27a** (4.12 mmol, 29%) as colourless oil and 440 mg adduct **27b** (0.98 mmol, 7%) as a colourless solid.

27a: $R_{\rm f} = 0.26$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = +19.7 \times 10^{-1} \deg \, {\rm cm}^2 \, {\rm g}^{-1} \, (c = 1.00, \, {\rm CHCl}_3); {}^{1}{\rm H} \, {\rm NMR}$ (400 MHz, CDCl₃): $\delta = 0.04$ (s, 6H, Si(CH₃)₂), 0.88 (s, 9H, C(CH₃)₃), 0.93 (d, {}^{3}J = 6.6 \, {\rm Hz}, 3H, \, {\rm CH}({\rm CH}_3)_{\rm a}({\rm CH}_3)_{\rm b}), 0.95 (d, ${}^{3}J = 6.6 \, {\rm Hz}, 3H, \, {\rm CH}({\rm CH}_3)_{\rm a}({\rm CH}_3)_{\rm b}), 1.00$ (d, ${}^{3}J = 6.4 \, {\rm Hz}, 3H, \, {\rm 3'-H_3}), 0.50-1.50$ (bs, 1H, CHN*H*CH), 1.72 (dsept,

 ${}^{3}J = 9.5$ Hz, ${}^{3}J = 6.7$ Hz, 1H, 2-H), 2.05–2.19 (m, 2H, 5-H₂), 2.69 (qt, ${}^{3}J = 6.5$ Hz, ${}^{3}J = 4.9$ Hz, 1H, 2'-H), 2.87 (td, ${}^{3}J = 6.7$ Hz, ${}^{3}J = 2.0$ Hz, 1H, 4-H), 3.23 (td, ${}^{3}J =$ 9.6 Hz, ${}^{3}J = 2.0$ Hz, 1H, 3-H), 3.39 (dd, ${}^{2}J = 9.8$ Hz, ${}^{3}J = 5.2$ Hz, 1H, 1'-H_a), 3.43 (dd, ${}^{2}J = 9.8$ Hz, ${}^{3}J = 4.7$ Hz, 1H, 1'-H_b), 4.97–5.07 (m, 2H, 7-H), 5.05 (d, ${}^{2}J = 12.3$ Hz, 1H, $CH_{a}H_{b}Ph$), 5.09 (d, ${}^{2}J = 12.3$ Hz, 1H, CH₂*H*_bPh), 5.29 (d, ${}^{3}J = 9.9$ Hz, 1H, NHCO), 5.75 $(ddt, {}^{3}J = 16.8 \text{ Hz}, {}^{3}J = 10.8 \text{ Hz}, {}^{3}J = 7.3 \text{ Hz}, 1\text{H}, 6\text{-H}),$ 7.24–7.36 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = -5.4$ (q, Si(CH₃)_a(CH₃)_b), -5.3 (q, Si(CH₃)_a(CH₃)_b), 18.3 (s, $C(CH_3)_3$), 18.6 (q, C-3'), 19.6 (q, $CH(CH_3)_a$) $(CH_3)_b$, 20.0 (q, CH(CH_3)_a(CH_3)_b), 25.9 (q, C(CH_3)_3), 30.7 (d, C-2), 38.6 (t, C-5), 53.3 (d, C-2'), 54.5 (d, C-4), 59.7 (d, C-3), 66.4 (t, CH₂Ph), 67.4 (t, C-1'), 117.7 (t, C-7), 127.9 (d, Ph), 128.0 (d, 2C, Ph), 128.5 (2d, Ph), 135.3 (d, C-6), 137.0 (s, Ph), 156.8 (s, NHCO) ppm; IR (DRIFT): $\overline{v} = 3,341$ (N–H), 1,726 (C=O) cm⁻¹; MS (FAB pos.): m/z $(\%) = 449 (100) [(M + H)^+];$ HRMS (C₂₅H₄₅N₂O₃Si): calcd. 449.3199, found 449.3195.

27b: $R_{\rm f} = 0.15$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = +18.0 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.73, CHCl₃); m.p.: 48–50 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.04$ (s, 6H, Si(CH₃)₂), 0.85 (d, ${}^{3}J = 6.8$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.94 (d, ${}^{3}J = 6.8$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.89 (s, 9H, C(CH₃)₃), 0.89 (d, ${}^{3}J = 6.6$ Hz, 3H, 3'-H₃), 1.50 (bs, 1H, CHNHCH), 1.99 (septd, ${}^{3}J = 6.9$ Hz, ${}^{3}J = 5.2$ Hz, 1H, 2-H), 2.10–2.27 (m, 2H, 5-H₂), 2.73 (q, ${}^{3}J = 6.0$ Hz, 1H, 4-H), 2.84 (dqd, ${}^{3}J = 7.3$ Hz, ${}^{3}J = 6.6$ Hz, ${}^{3}J = 4.3$ Hz, 1H, 2'-H), 3.31 $(dd, {}^{2}J = 9.7 \text{ Hz}, {}^{3}J = 7.3 \text{ Hz}, 1\text{H}, 1'-\text{H}_{a}), 3.49 (dd,$ $^{2}J = 9.7$ Hz, $^{3}J = 4.4$ Hz, 1H, 1'-H_b), 3.55 (dt, $^{3}J = 10.3$ Hz, ${}^{3}J = 5.6$ Hz, 1H, 3-H), 4.93 (d, ${}^{3}J = 10.4$ Hz, 1H, NHCO), 5.03–5.12 (m, 2H, 7-H₂), 5.08 (d, ${}^{2}J = 12.1$ Hz, 1H, CH_aH_bPh), 5.12 (d, ${}^2J = 12.1$ Hz, 1H, CH_aH_bPh), 5.85 $(ddt, {}^{3}J = 17.3 \text{ Hz}, {}^{3}J = 10.1 \text{ Hz}, {}^{3}J = 7.1 \text{ Hz}, 1\text{H}, 6\text{-H}),$ 7.25–7.38 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = -5.4$ (q, Si(CH₃)_a(CH₃)_b), -5.4 (q, Si(CH₃)_a(CH₃)_b), 17.4 (q, C-3'), 17.7 (q, CH(CH₃)_a(CH₃)_b), 18.3 (q, $CH(CH_3)_a(CH_3)_b$, 18.3 (s, $C(CH_3)_3$), 25.9 (q, $C(CH_3)_3$), 28.5 (d, C-2), 35.2 (t, C-5), 51.8 (d, C-2'), 55.7 (d, C-4), 57.8 (d, C-3), 66.6 (t, CH₂Ph), 67.6 (t, C-1'), 117.5 (t, C-7), 128.0 (d, 3C, Ph), 128.5 (2d, Ph), 135.4 (d, C-2'), 136.9 (s, Ph), 156.8 (s, NHCO) ppm; IR (DRIFT): $\bar{\nu} = 3,326$ (N–H), 1,712, 1,691 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 449 (100) $[(M + H)^+]$; HRMS $(C_{25}H_{45}N_2O_3Si)$: calcd. 449.3199, found 449.3202.

Benzyl (3S,4S,2'S) and (3S,4R,2'S)-4-[1-(tert-butyldimethylsilyloxy)-4-methyl-2-pentylamino]-2-methylhept-6en-3-ylcarbamate (**28a**, **28b**, C₂₈H₅₀N₂O₃Si)

Aldimine **12** (3.42 g, 7.62 mmol), 994 mg Zn (15.2 mmol), 288 mg CeCl₃·7H₂O (0.76 mmol), and 1.09 cm³ allyl bromide (14.5 mmol) were reacted according to GP 8 in

15 cm³ THF within 16 h. Chromatography (hexanes–Et₂O 8:1 \rightarrow 5:1) yielded 1.42 g adduct **28a** (2.89 mmol, 38%) as a colourless oil and 466 mg adduct **28b** (0.95 mmol, 12%) as a colourless solid.

28a: $R_{\rm f} = 0.51$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = -10.9 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.89, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.03$ (s, 3H, Si(CH₃)₂(CH₃)_b), 0.04 (s, 3H, $Si(CH_3)_{a}(CH_3)_{b}$, 0.86 (d, ${}^{3}J = 6.6$ Hz, 3H, $CH_2CH(CH_3)_{a}$ (CH₃)_b), 0.86–0.90 (m, 3H, CH₂CH(CH₃)_a(CH₃)_b), 0.88 (s, 9H, C(CH₃)₃), 0.94 (d, ${}^{3}J = 6.7$ Hz, 3H, CH(CH₃)_a $(CH_3)_b$, 0.94 (d, ${}^{3}J = 6.7$ Hz, 3H, $CH(CH_3)_a(CH_3)_b$), 1.15 $(\varphi$ -t, ${}^{3}J = 6.7$ Hz, 2H, 3'-H₂), 1.05–1.40 (bs, 1H, CHNHCH), 1.64 (φ -oct, ${}^{3}J = 6.7$ Hz, 1H, 2-H), 1.65– 1.76 (m, 1H, 4'-H), 2.07 (φ -dt, ${}^{2}J = 14.2$ Hz, ${}^{3}J = 7.1$ Hz, 1H, 5-H_a), 2.15 (dddt, ${}^{2}J = 13.7$ Hz, ${}^{3}J = 7.0$ Hz, ${}^{3}J = 5.5$ Hz, ${}^{4}J = 1.3$ Hz, 1H, 5-H_b), 2.53–2.64 (m, 1H, 2'-H), 2.81 (ddd, ${}^{3}J = 7.9$ Hz, ${}^{3}J = 5.4$ Hz, ${}^{3}J = 1.5$ Hz, 1H, 4-H), 3.23 (td, ${}^{3}J = 9.8$ Hz, ${}^{3}J = 1.5$ Hz, 1H, 3-H), 3.36 (dd, ${}^{2}J = 10.0$ Hz, ${}^{3}J = 4.9$ Hz, 1H, 1'-H_a), 3.62 (dd, $^{2}J = 10.0$ Hz, $^{3}J = 3.7$ Hz, 1H, 1'-H_b), 5.00–5.15 (m, 4H, 7-H₂, CH₂Ph), 5.26 (d, ${}^{3}J = 10.1$ Hz, 1H, NHCO), 5.81 (dtt, ${}^{3}J = 17.2$ Hz, ${}^{3}J = 10.1$ Hz, ${}^{3}J = 7.2$ Hz, 1H, 6-H), 7.27–7.40 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = -5.5$ (q, Si(CH₃)_a(CH₃)_b), -5.4 (q, Si(CH₃)_a(CH₃)_b), 18.2 (s, C(CH₃)₃), 19.7 (q, CH(CH₃)_a(CH₃)_b), 20.0 (q, CH(CH₃)_a(CH₃)_b), 22.8 (q, CH₂CH(CH₃)_a(CH₃)_b), 23.2 (q, CH₂CH(CH₃)_a(CH₃)_b), 24.9 (d, C-4'), 25.9 (q, C(CH₃)₃), 30.6 (d, C-2), 38.4 (t, C-5), 42.3 (t, C-3'), 54.2 (d, C-4), 56.0 (d, C-2'), 59.3 (d, C-3), 64.9 (t, C-1'), 66.4 (t, CH₂Ph), 117.5 (t, C-7), 128.0 (d, Ph), 128.0 (d, 2C, Ph), 128.5 (2d, Ph), 135.3 (d, C-6), 137.0 (s, Ph), 156.8 (s, NHCO) ppm; IR (KBr): $\overline{v} = 3,430, 3,343$ (N–H), 1,727 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 491 (100) [(M + H)⁺]: HRMS (C₂₈H₅₁N₂O₃Si): calcd. 491.3669, found 491.3671.

28b: $R_{\rm f} = 0.37$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = +14.3 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.75, CHCl₃); m.p.: <45 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.04$ (s, 6H, Si(CH₃)₂), 0.87 $(d, {}^{3}J = 6.6 \text{ Hz}, 3\text{H}, \text{CHC}H_{3}), 0.86-0.91 \text{ (m, 3H, CHC}H_{3}),$ 0.89 (d, ${}^{3}J = 6.6$ Hz, 3H, CHCH₃), 0.89 (s, 9H, C(CH₃)₃), 0.94 (d, ${}^{3}J = 6.8$ Hz, 3H, CHCH₃), 1.15 (φ -t, ${}^{3}J = 6.7$ Hz, 2H, 3'-H₂), 1.40 (bs, 1H, CHNHCH), 1.60 (φ-nonet, ${}^{3}J = 6.6$ Hz, ${}^{3}J = 6.6$ Hz, 1H, 4'-H), 1.96 (septd, ${}^{3}J = 6.7$ Hz, ${}^{3}J = 5.5$ Hz, 1H, 2-H), 2.10–2.26 (m, 2H, 5-H₂), 2.70 (qd, ${}^{3}J = 6.7$ Hz, ${}^{3}J = 4.2$ Hz, 1H, 2'-H), 2.75 (q, ${}^{3}J = 6.0$ Hz, 1H, 4-H), 3.32 (dd, ${}^{2}J = 10.0$ Hz, ${}^{3}J = 6.2$ Hz, 1H, 1'-H_a), 3.54 (dt, ${}^{3}J = 10.2$ Hz, ${}^{3}J = 5.6$ Hz, 1H, 3-H), 3.61 (dd, ${}^{2}J = 9.9$ Hz, ${}^{3}J = 3.8$ Hz, 1H, 1'-H_b), 4.97 (d, ${}^{3}J = 10.2$ Hz, 1H, NHCO), 5.03–5.13 (m, 4H, 7-H₂, CH₂Ph), 5.84 (ddt, ${}^{3}J = 17.2$ Hz, ${}^{3}J = 10.2$ Hz, ${}^{3}J = 7.2$ Hz, 1H, 6-H), 7.25–7.38 (m, 5H, Ph) ppm; ${}^{13}C$ NMR (100 MHz, CDCl₃): $\delta = -5.5$ (q, Si(CH₃)_a(CH₃)_b), -5.4 (q, Si(CH₃)_a(CH₃)_b), 18.0 (q, CH(CH₃)_a(CH₃)_b), 20.9 (q, CH(CH₃)_a(CH₃)_b), 18.3 (s, C(CH₃)₃), 22.8 (q, CH₂CH(CH₃)_a(CH₃)_b), 23.5 (q, CH₂CH(CH₃)_a(CH₃)_b), 24.5 (d, C-1), 24.9 (d, C-4'), 25.9 (q, C(CH₃)₃), 28.7 (d, C-2), 35.6 (t, C-5), 41.9 (t, C-3'), 54.6 (d, C-2'), 55.7 (d, C-4), 57.7 (d, C-3), 65.2 (t, C-1'), 66.5 (t, CH₂Ph), 117.4 (t, C-7), 128.0 (d, 3C, Ph), 128.5, (2d, Ph), 135.6 (d, C-6), 136.9 (s, Ph), 156.7 (s, NHCO) ppm; IR (DRIFT): $\bar{\nu} = 3,301$ (N–H), 1,721, 1,692 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 491 (100) [(M + H)⁺]; HRMS (C₂₈H₅₁N₂O₃Si): calcd. 491.3669, found 491.3666.

tert-Butyl (2S,4'S,5'S) and (2S,4'R,5'S)-2-[5-(benzyloxy-carbonylamino)-7-methyloct-1-en-4-ylamino]-3-methylbut-anoate (**29a**, **29b**, $C_{26}H_{42}N_2O_4$)

Aldimine **13** (404 mg, 1.00 mmol), 131 mg Zn (2.00 mmol), 37 mg CeCl₃·7H₂O (0.10 mmol), and 170 mm³ allyl bromide (1.90 mmol) were reacted according to GP 8 in 4 cm³ THF within 16 h. Chromatography (hexanes–Et₂O 10:1 \rightarrow 8:1) yielded 98 mg adduct **29a** (0.22 mmol, 22%) as a colourless solid and 72 mg adduct **29b** (0.16 mmol, 16%) as a colourless oil.

29a: $R_{\rm f} = 0.44$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = -31.6 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 1.20, CHCl₃); m.p.: 48–50 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.91$ (d, ${}^{3}J = 6.3$ Hz, 3H, CHCH₃), 0.92 (d, ${}^{3}J = 6.5$ Hz, 3H, CHCH₃), 0.93 (d, ${}^{3}J = 6.5$ Hz, 3H, CHCH₃), 0.93 (d, ${}^{3}J = 6.8$ Hz, 3H, CHCH₃), 1.26 (bs, 1H, CHNHCH), 1.32 (ddd, $^{2}J = 13.7$ Hz, $^{3}J = 8.2$ Hz, $^{3}J = 5.6$ Hz, 1H, 6'-H_a), 1.37 (ddd, ${}^{2}J = 14.0$ Hz, ${}^{3}J = 8.6$ Hz, ${}^{3}J = 5.5$ Hz, 1H, 6'-H_b), 1.47 (s, 9H, C(CH₃)₃), 1.64 (dsept, ${}^{3}J = 7.9$ Hz, ${}^{3}J = 6.5$ Hz, 1H, 7'-H), 1.77 (φ -oct, ${}^{3}J = 6.7$ Hz, 1H, 3-H), 2.03–2.12 (m, 1H, 3'-H_a), 2.16 (dtt, ${}^{2}J = 13.9$ Hz, ${}^{3}J = 6.9$ Hz, ${}^{3}J = 1.9$ Hz, 1H, 3'-H_b), 2.48 (td, ${}^{3}J = 7.0$ Hz, ${}^{3}J = 1.9$ Hz, 1H, 4'-H), 2.89 (d, ${}^{3}J = 6.6$ Hz, 1H, 2-H), 3.72 (tdd, ${}^{3}J = 9.2$ Hz, ${}^{3}J = 5.6$ Hz, ${}^{3}J = 1.9$ Hz, 1H, 5'-H), 5.03 (d, ${}^{3}J = 9.5$ Hz, 1H, NHCO), 5.04–5.11 (m, 2H, 1'-H), 5.07 (d, ${}^{2}J = 12.2$ Hz, 1H, OCH_aH_b), 5.11 (d, ${}^{2}J = 12.2$ Hz, 1H, OCH_aH_b), 5.78 (dddd, ${}^{3}J = 17.0$ Hz, ${}^{3}J = 9.5$ Hz, ${}^{3}J = 7.6$ Hz, ${}^{3}J = 6.8$ Hz, 1H, 2'-H), 7.27– 7.40 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 18.9 (q, CH(CH_3)_a(CH_3)_b), 19.5 (q, CH(CH_3)_a(CH_3)_b),$ 22.3 (q, CH₂CH(CH₃)_a(CH₃)_b), 23.3 (q, CH₂CH(CH₃)_a (CH₃)_b), 24.9 (d, C-7'), 28.2 (q, C(CH₃)₃), 32.2 (d, C-3), 37.7 (t, C-3'), 42.4 (t, C-6'), 51.2 (d, C-5'), 58.9 (d, C-4'), 66.5 (t, OCH₂), 68.0 (d, C-2), 81.0 (s, C(CH₃)₃), 117.8 (t, C-1'), 128.1 (d, Ph), 128.1 (d, 2C, Ph), 128.5 (d, 2C, Ph), 135.3 (d, C-2'), 136.9 (s, Ph), 156.2 (s, NHCO), 174.9 (s, C-1) ppm; IR (KBr): $\overline{v} = 3,346$ (N–H), 1,721, 1,704 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 447 (86) [(M + H)⁺]; HRMS (C₂₆H₄₃N₂O₄): calcd. 447.3223, found 447.3226.

29b: $R_{\rm f} = 0.40$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = \pm 0.0 \times 10^{-1} \deg \rm cm^2 g^{-1}$ (c = 0.84, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.89$ (d, ³J = 6.3 Hz, 3H, CHCH₃), 0.90 (d, ³J = 6.5 Hz, 3H, CHCH₃), 0.91 (d, ³J = 6.5 Hz, 3H,

CHCH₃), 0.92 (d, ${}^{3}J = 6.8$ Hz, 3H, CHCH₃), 1.15–1.40 (m, 2H, 6'-H), 1.46 (s, 9H, C(CH₃)₃), 1.55–1.72 (m, 2H, CHN*H*CH, 7'-H), 1.80 (φ -oct, ${}^{3}J = 6.6$ Hz, 1H, 3-H), 2.11 (t, ${}^{3}J = 7.1$ Hz, 2H, 3'-H₂), 2.57 (td, ${}^{3}J = 6.6$ Hz, ${}^{3}J = 3.1$ Hz, 1H, 4'-H), 2.91 (d, ${}^{3}J = 7.3$ Hz, 1H, 2-H), 3.77-3.86 (m, 1H, 5'-H), 5.00-5.13 (m, 5H, 1'-H, NHCO, OCH₂), 5.67–5.79 (m, 1H, 2'-H), 7.26–7.39 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 18.4$ (q, $CH(CH_3)_a(CH_3)_b)$, 19.3 (q, $CH(CH_3)_a(CH_3)_b)$, 21.9 (q, $CH_2CH(CH_3)_a(CH_3)_b)$, 23.6 (q, $CH_2CH(CH_3)_a(CH_3)_b)$, 24.7 (d, C-7'), 28.1 (q, C(CH₃)₃), 32.4 (d, C-3), 36.3 (t, C-3'), 38.8 (t, C-6'), 50.3 (d, C-5'), 60.1 (d, C-4'), 66.2 (d, C-2), 66.4 (t, OCH₂), 81.0 (s, C(CH₃)₃), 117.6 (t, C-1'), 127.9 (d, 3C, Ph), 128.4 (2d, Ph), 135.0 (d, C-2'), 136.9 (s, Ph), 156.3 (s, NHCO), 175.1 (s, C-1) ppm; IR (KBr): $\overline{v} = 3,346$ (N–H), 1,725 (bs, C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 447 (30) [(M + H)⁺]; HRMS (C₂₆H₄₃N₂O₄): calcd. 447.3223, found 447.3221.

tert-Butyl (2S,4'S,5'S) and (2S,4'R,5'S)-2-[5-(benzyloxy-carbonylamino)-6-methylhept-1-en-4-ylamino]propanoate (**30a**, **30b**, $C_{23}H_{36}N_2O_4$)

Aldimine **14** (1.45 g, 4.00 mmol), 523 mg Zn (8.00 mmol), 149 mg CeCl₃·7H₂O (0.40 mmol), and 661 mm³ allyl bromide (7.60 mmol) were reacted according to GP 8 in 5 cm³ THF within 16 h. Chromatography (hexanes–Et₂O 8:1 \rightarrow 3:1) yielded 860 mg adduct **30a** (2.13 mmol, 53%) and 216 mg adduct **30b** (0.53 mmol, 13%) as colourless oils.

30a: $R_{\rm f} = 0.33$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = -27.8 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.82, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.94$ (d, ${}^{3}J = 6.7$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.95 (d, ${}^{3}J = 6.7$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 1.17 (d, ${}^{3}J = 6.9$ Hz, 3H, 3-H₃), 1.46 (s, 9H, C(CH₃)₃), 1.44–1.50 (m, 1H, CHNHCH), 1.67 (dsept, ${}^{3}J = 9.8$ Hz, ${}^{3}J =$ 6.7 Hz, 1H, 6'-H), 2.06-2.20 (m, 2H, 3'-H₂), 2.76 (ddd, ${}^{3}J = 7.7$ Hz, ${}^{3}J = 6.4$ Hz, ${}^{3}J = 1.5$ Hz, 1H, 4'-H), 3.22 (q, ${}^{3}J = 6.9$ Hz, 1H, 2-H), 3.17–3.24 (m, 1H, 5'-H), 5.03–5.14 (m, 3H, 1'-H₂, NHCO), 5.08 (d, ${}^{2}J = 12.3$ Hz, 1H, OCH_aH_b), 5.13 (d, ²J = 12.2 Hz, 1H, OCH_aH_b), 5.77 $(ddt, {}^{3}J = 15.9 \text{ Hz}, {}^{3}J = 11.2 \text{ Hz}, {}^{3}J = 7.2 \text{ Hz}, 1\text{H}, 2'-\text{H}),$ 7.28–7.41 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 19.7$ (q, CHCH₃), 19.8 (q, CHCH₃), 19.9 (q, CHCH₃), 28.1 (q, C(CH₃)₃), 31.2 (d, C-6'), 38.7 (t, C-3'), 55.4 (d, C-4'), 57.4 (d, C-2 or C-5'), 59.4 (d, C-2 or C-5'), 66.5 (t, OCH₂), 81.0 (s, C(CH₃)₃), 117.9 (t, C-1'), 128.0 (d, Ph), 128.1 (d, 2C, Ph), 128.5 (2d, Ph), 135.0 (d, C-2'), 136.9 (s, Ph), 156.7 (s, NHCO), 175.4 (s, C-1) ppm; IR (KBr): $\overline{v} = 3,337$ (N–H), 1,727 (C=O) cm⁻¹; MS (FAB pos.): m/z $(\%) = 405 (100) [(M + H)^+];$ HRMS $(C_{23}H_{37}N_2O_4):$ calcd. 405.2753, found 407.2751.

30b: $R_{\rm f} = 0.15$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = -1.0 \times 10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 1.00, CHCl₃); ¹H NMR (400 MHz,

CDCl₃): $\delta = 0.93$ (d, ${}^{3}J = 6.7$ Hz, 3H, CH(CH₃)₂(CH₃)_b), 0.93 (d, ${}^{3}J = 6.7$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 1.18 (d, ${}^{3}J = 6.8$ Hz, 3H, 3-H₃), 1.45 (s, 9H, C(CH₃)₃), 1.60–1.90 (bs, 1H, CHNHCH), 1.76 (dsept, ${}^{3}J = 7.9$ Hz, ${}^{3}J = 6.7$ Hz, 1H, 6'-H), 1.98 (dt, ${}^{2}J = 14.0$ Hz, ${}^{3}J = 8.6$ Hz, 1H, 3'-H_a), 2.24 (dddt, ${}^{2}J = 14.0$ Hz, ${}^{4}J = 8.6$ Hz, ${}^{3}J = 5.6$ Hz, ${}^{3}J = 3.6$ Hz, 1H, 3'-H_b), 2.72 (dt, ${}^{3}J = 8.5$ Hz, ${}^{3}J =$ 4.1 Hz, 1H, 4'-H), 3.44 (q, ${}^{3}J = 6.9$ Hz, 1H, 2-H), 3.55 $(ddd, {}^{3}J = 10.3 \text{ Hz}, {}^{3}J = 8.1 \text{ Hz}, {}^{3}J = 4.3 \text{ Hz}, 1\text{H}, 5'-\text{H}),$ 4.66 (d, ${}^{3}J = 10.9$ Hz, 1H, NHCO), 5.06 (d, ${}^{2}J = 12.3$ Hz, 1H, OCH_aH_b), 5.14 (d, ${}^{2}J = 12.3$ Hz, 1H, OCH_aH_b), 5.08–5.18 (m, 2H, 1'-H), 5.83 (dddd, ${}^{3}J = 16.7$ Hz, ${}^{3}J = 10.3$ Hz, ${}^{3}J = 8.4$ Hz, ${}^{3}J = 6.0$ Hz, 1H, 2'-H), 7.27– 7.40 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 19.3 (q, CH(CH_3)_a(CH_3)_b), 20.3 (q, CH(CH_3)_a(CH_3)_b),$ 19.5 (q, C-3), 28.1 (q, C(CH₃)₃), 29.5 (d, C-6'), 34.5 (t, C-3'), 54.7 (d, C-2), 55.7 (d, C-4'), 57.2 (d, C-5'), 66.6 (t, OCH₂), 80.7 (s, C(CH₃)₃), 118.1 (t, C-1'), 128.0 (d, 3C, Ph), 128.5 (d, 2C, Ph), 135.2 (d, C-2'), 136.8 (s, Ph), 156.9 (s, NHCO), 175.4 (s, C-1) ppm; IR (KBr): $\overline{v} = 3,335$ (N– H), 1,726 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 405 $(100) [(M + H)^+];$ HRMS $(C_{23}H_{37}N_2O_4):$ calcd. 405.2753, found 407.2751.

tert-Butyl (2S,4'S,5'S) and (2S,4'R,5'S)-2-[5-(benzyloxy-carbonylamino)-6-methylhept-1-en-4-ylamino]-4-methyl-pentanoate (**31a**, **31b**, $C_{26}H_{42}N_2O_4$)

Aldimine **15** (29.7 g, 73.5 mmol), 9.61 g Zn (147 mmol), 2.74 g CeCl₃·7H₂O (7.35 mmol), and 10.5 cm³ allyl bromide (140 mmol) were reacted according to GP 8 in 40 cm³ THF within 16 h. Chromatography (hexanes–Et₂O 6:1 \rightarrow 3:1) yielded 6.58 g adduct **31a** (14.7 mmol, 20%) and 6.70 g adduct **31b** (15.0 mmol, 20%) as colourless oils.

31a: $R_{\rm f} = 0.43$ (hexanes-EtOAc 6:1); $[\alpha]_{\rm D}^{20} = -31.9 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.70, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.88$ (d, ${}^{3}J = 6.6$ Hz, 3H, CH₂CH(CH₃)_a $(CH_3)_b$, 0.90 (d, ${}^{3}J = 6.6$ Hz, 3H, $CH_2CH(CH_3)_a(CH_3)_b$), 0.95 (d, ${}^{3}J = 6.7$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.96 (d, ${}^{3}J = 6.7$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 1.26–1.34 (m, 1H, 3-H_a), 1.30–1.55 (bs, 1H, CHNHCH), 1.35 (dt, ${}^{2}J = 14.0$ Hz, ${}^{3}J = 7.0$ Hz, 2H, 3-H_b), 1.41 (s, 9H, C(CH₃)₃), 1.60– 1.77 (m, 2H, 4-H, 6'-H), 2.11 (tt, ${}^{3}J = 7.0$ Hz, ${}^{4}J = 1.3$ Hz, 2H, 3'-H₂), 2.76 (td, ${}^{3}J = 6.9$ Hz, ${}^{3}J = 1.5$ Hz, 1H, 4'-H), 3.13 (dd, ${}^{3}J = 7.5$ Hz, ${}^{3}J = 7.0$ Hz, 1H, 2-H), 3.20 (td, ${}^{3}J = 9.9$ Hz, ${}^{3}J = 1.4$ Hz, 1H, 5'-H), 5.04 (ddt, ${}^{3}J =$ 10.4 Hz, ${}^{2}J = 2.0$ Hz, ${}^{4}J = 1.3$ Hz, 1H, 1'-H_{cis}), 5.01-5.09 (m, 1H, 1'-H_{trans}), 5.09 (d, ${}^{2}J = 12.1$ Hz, 1H, OCH_aH_b), 5.13 (d, ²J = 12.1 Hz, 1H, OCH_aH_b), 5.30 (d, ${}^{3}J = 9.9$ Hz, 1H, NHCO), 5.76 (ddt, ${}^{3}J = 17.6$ Hz, ${}^{3}J = 10.4$ Hz, ${}^{3}J = 7.2$ Hz, 1H, 2'-H), 7.14–7.40 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 19.7$ (q, $CH(CH_3)_a(CH_3)_b)$, 20.1 (q, $CH(CH_3)_a(CH_3)_b)$, 22.5 (q,

CH₂CH(CH₃)_a(CH₃)_b), 22.7 (q, CH₂CH(CH₃)_a(CH₃)_b), 24.8 (d, C-4), 28.1 (q, C(CH₃)₃), 31.4 (d, C-6'), 38.9 (t, C-3'), 43.7 (t, C-3), 55.6 (d, C-4'), 59.5 (d, C-5'), 61.0 (d, C-2), 66.5 (t, OCH₂), 81.0 (s, C(CH₃)₃), 118.0 (t, C-1'), 128.0 (d, Ph), 128.1 (d, 2C, Ph), 128.5 (2d, Ph), 134.9 (d, C-2'), 137.0 (s, Ph), 156.7 (s, NHCO), 175.7 (s, C-1) ppm; IR (KBr): $\bar{\nu} = 3,337$ (N–H), 1,727 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 447 (97) [(M + H)⁺]; HRMS (C₂₆H₄₃N₂O₄): calcd. 447.3223, found 447.3221.

31b: $R_{\rm f} = 0.30$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = -8.8 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.63, CHCl₂); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.87$ (d, ${}^{3}J = 6.7$ Hz, 3H, CH₂CH $(CH_3)_a(CH_3)_b)$, 0.91 (d, ${}^{3}J = 6.7$ Hz, 3H, $CH_2CH(CH_3)_a$ $(CH_3)_{\rm b}$, 0.93 (d, ${}^{3}J = 6.8$ Hz, 3H, $CH(CH_3)_{\rm a}(CH_3)_{\rm b}$), 0.94 $(d, {}^{3}J = 6.8 \text{ Hz}, 3\text{H}, CH(CH_{3})_{a}(CH_{3})_{b}), 1.30 (dt, {}^{2}J =$ 13.4 Hz, ${}^{3}J = 7.3$ Hz, 1H, 3-H_a), 1.39 (dt, ${}^{2}J = 13.6$ Hz, ${}^{3}J = 6.9$ Hz, 1H, 3-H_b), 1.46 (s, 9H, C(CH₃)₃), 1.60–1.72 (m, 2H, 4-H, CHNHCH), 1.79 (φ -oct, ${}^{3}J = 6.8$ Hz, 1H, 6'-H), 1.92–2.03 (m, 1H, 3'-H_a), 2.22 (dddt, ${}^{2}J = 14.0$ Hz, ${}^{3}J = 5.9$ Hz, ${}^{3}J = 4.2$ Hz, ${}^{4}J = 1.6$ Hz, 1H, 3'-H_b), 2.69 $(dt, {}^{3}J = 8.6 \text{ Hz}, {}^{3}J = 4.2 \text{ Hz}, 1\text{H}, 4'-\text{H}), 3.33 (t, {}^{3}J = 7.3 \text{ Hz})$ Hz, 1H, 2-H), 3.57 (ddd, ${}^{3}J = 10.2$ Hz, ${}^{3}J = 8.0$ Hz, ${}^{3}J = 4.4$ Hz, 1H, 5'-H), 4.68 (d, ${}^{3}J = 10.0$ Hz, 1H, NHCO), 5.04-5.17 (m, 4H, 1'-H, OCH₂), 5.79 (dddd, ${}^{3}J = 16.9 \text{ Hz}, {}^{3}J = 10.9 \text{ Hz}, {}^{3}J = 8.4 \text{ Hz}, {}^{3}J = 6.0 \text{ Hz},$ 1H, 2'-H), 7.27–7.39 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 19.3$ (q, CH(CH₃)_a(CH₃)_b), 20.3 (q, CH(CH₃)_a(CH₃)_b), 22.6 (q, CH₂CH(CH₃)_a(CH₃)_b), 22.8 (q, CH₂CH(CH₃)_a(CH₃)_b), 24.9 (d, C-4), 28.1 (q, C(CH₃)₃), 29.6 (d, C-6'), 34.7 (t, C-3'), 43.5 (t, C-3), 56.1 (d, C-4'), 57.2 (d, C-5'), 58.4 (d, C-2), 66.6 (t, OCH₂), 80.7 (s, C(CH₃)₃), 118.1 (t, C-1[']), 128.0 (d, 3C, Ph), 128.5 (d, 2C, Ph), 135.2 (d, C-2'), 136.9 (s, Ph), 156.8 (s, NHCO), 175.7 (s, C-1) ppm; IR (KBr): $\overline{v} = 3,335$ (N–H), 1,726 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 447 (100) [(M + H)⁺]; HRMS (C₂₆H₄₃N₂O₄): calcd. 447.3223, found 447.3221.

tert-Butyl (2S,4'S,5'S) and (2S,4'R,5'S)-2-[5-(benzyloxycarbonylamino)-7-methyloct-1-en-4-ylamino]-3-phenylpropanoate (**32a**, **32b**, $C_{30}H_{42}N_2O_4$)

Aldimine **16** (2.26 g, 5.00 mmol), 654 mg Zn (10.0 mmol), 186 mg CeCl₃·7H₂O (0.50 mmol), and 720 mm³ allyl bromide (9.50 mmol) were reacted according to GP 8 in 15 cm³ THF within 16 h. Chromatography (hexanes–Et₂O 8:1 \rightarrow 4:1) yielded 537 mg adduct **32a** (1.09 mmol, 22%) and 672 mg adduct **32b** (1.36 mmol, 27%) as colourless oils.

32a: $R_{\rm f} = 0.41$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = -15.6 \times 10^{-1}$ deg cm² g⁻¹ (c = 1.17, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.81$ (d, ³J = 6.6 Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.83 (d, ³J = 6.6 Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.95–1.15 (m, 2H, 6'-H), 1.38 (s, 9H, C(CH₃)₃), 1.33–1.52 (m, 2H, 7'-H, CHNHCH), 2.06 (dddt, ²J = 13.7 Hz, ³J = 7.9 Hz,

 ${}^{3}J = 6.9$ Hz, ${}^{4}J = 1.4$ Hz, 1H, 3'-H₂), 2.14 (dtt, ${}^{2}J = 13.6$ Hz, ${}^{3}J = 6.8$ Hz, ${}^{4}J = 1.2$ Hz, 1H, 3'-H_b), 2.50 (td, ${}^{3}J = 7.0$ Hz, ${}^{3}J = 1.8$ Hz, 1H, 4'-H), 2.71 (dd, ${}^{2}J = 13.4$ Hz, ${}^{3}J = 8.0$ Hz, 1H, 3-H_a), 2.83 (dd, ${}^{2}J = 13.4$ Hz. ${}^{3}J =$ 6.3 Hz, 1H, 3-H_b), 3.35 (dd, ${}^{3}J = 8.0$ Hz, ${}^{3}J = 6.3$ Hz, 1H, 2-H), 3.62 (tdd, ${}^{3}J = 9.3$ Hz, ${}^{3}J = 5.7$ Hz, ${}^{3}J =$ 1.5 Hz, 1H, 5'-H), 4.72 (d, ${}^{3}J = 9.7$ Hz, 1H, NHCO), 5.02–5.10 (m, 4H, 1'-H₂, OCH₂), 5.75 (dddd, ${}^{3}J =$ 17.5 Hz, ${}^{3}J = 9.4$ Hz, ${}^{3}J = 7.8$ Hz, ${}^{3}J = 6.5$ Hz, 1H, 2'-H), 7.15–7.40 (m, 10H, 2 Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 22.2$ (q, CH(CH₃)_a(CH₃)_b), 23.1 (q, $CH(CH_3)_a(CH_3)_b$, 24.8 (d, C-7'), 28.0 (q, C(CH_3)_3), 37.9 (t, C-3'), 40.5 (t, C-3), 42.6 (t, C-6'), 51.3 (d, C-5'), 58.7 (d, C-4'), 63.9 (d, C-2), 66.4 (t, OCH₂), 81.3 (s, C(CH₃)₃), 118.0 (t, C-1'), 126.5 (d, Ph), 128.0 (d, 3C, Ph), 128.2 (d, 2C, Ph), 128.5 (d, 2C, Ph), 129.5 (2d, Ph), 135.2 (d, C-2'), 137.0 (s, Ph), 138.0 (s, Ph), 156.2 (s, NHCO), 174.4 (s, C-1) ppm; IR (KBr): $\bar{\nu} = 3,339$ (N–H), 1,724 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 495 (21) [(M + H)⁺]; HRMS (C₃₀H₄₃N₂O₄): calcd. 495.3223, found 495.3227.

32b: $R_{\rm f} = 0.34$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = +8.5 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ ($c = 1.19, \text{ CHCl}_3$); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.86$ (d, ${}^{3}J = 6.5$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.88 (d, ${}^{3}J = 6.6$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 1.04–1.24 (m, 2H, 6'-H₂), 1.35 (s, 9H, $C(CH_3)_3$), 1.49–1.60 (m, 2H, 7'-H, CHNHCH), 2.05-2.15 (m, 2H, 3'-H₂), 2.56 (td, ${}^{3}J = 7.2$ Hz, ${}^{3}J = 3.3$ Hz, 1H, 4'-H), 2.73 (dd, ${}^{2}J = 13.4$ Hz, ${}^{3}J = 7.8$ Hz, 1H, 3-H_a), 2.81 (dd, ${}^{2}J = 13.4$ Hz, ${}^{3}J = 6.6$ Hz, 1H, 3-H_b), 3.43 (dd, ${}^{3}J = 7.7$ Hz, ${}^{3}J =$ 6.5 Hz, 1H, 2-H), 3.70-3.80 (m, 1H, 5'-H), 4.57 (d, ${}^{3}J = 9.2$ Hz, 1H, NHCO), 5.03–5.14 (m, 4H, 1'-H₂, OCH₂), 5.71 (ddt, ${}^{3}J = 17.4$ Hz, ${}^{3}J = 10.4$ Hz, ${}^{3}J = 7.2$ Hz, 1H, 2'-H), 7.15–7.40 (m, 10H, 2 Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.8$ (q, CH(CH₃)_a(CH₃)_b), 23.7 $(q, CH(CH_3)_a(CH_3)_b), 24.6 (d, C-7'), 28.0 (q, C(CH_3)_3),$ 36.4 (t, C-3'), 38.6 (t, C-3), 40.7 (t, C-6'), 50.4 (d, C-5'), 59.8 (d, C-4'), 62.8 (d, C-2), 66.4 (t, OCH₂), 81.2 (s, *C*(CH₃)₃), 117.7 (t, C-1'), 126.4 (d, Ph), 128.0 (d, 2C, Ph), 128.0 (d, Ph), 128.2 (d, 2C, Ph), 128.4 (d, 2C, Ph), 129.5 (2d, Ph), 134.9 (d, C-2'), 136.9, 138.0 (2s, 2 Ph), 156.2 (s, NHCO), 174.8 (s, C-1) ppm; IR (KBr): $\overline{v} = 3,341$ (N–H), 1,722 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 495 (45) $[(M + H)^+]$; HRMS (C₃₀H₄₃N₂O₄): calcd. 495.3223, found 495.3220.

tert-Butyl (2S,4'S,5'S) and (2S,4'R,5'S)-2-[5-(benzyloxycarbonylamino)-6-methylhept-1-en-4-ylamino]-3-methylbutanoate (**33a**, **33b**, $C_{25}H_{40}N_2O_4$)

Aldimine **17** (5.86 g, 15.0 mmol), 1.96 g Zn (30.0 mmol), 559 mg CeCl₃·7H₂O (1.50 mmol), and 2.43 cm³ allyl bromide (28.5 mmol) were reacted according to GP 8 in 30 cm³ THF within 16 h. Chromatography (hexanes–Et₂O 8:1 \rightarrow 4:1) yielded 878 mg adduct **33a** (2.00 mmol, 14%) and 1.09 g adduct **33b** (2.50 mmol, 17%) as colourless oils.

33a: $R_{\rm f} = 0.47$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = -28.5 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.84, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.90$ (d, ${}^{3}J = 6.7$ Hz, 3H, CHCH₃), 0.94 (d, ${}^{3}J = 6.7$ Hz, 3H, CHCH₃), 0.94 (d, ${}^{3}J = 6.8$ Hz, 3H, CHCH₃), 0.95 (d, ${}^{3}J = 6.8$ Hz, 3H, CHCH₃), 1.18 (bs. 1H, CHNHCH), 1.48 (s, 9H, C(CH₃)₃), 1.71 (dsept, ${}^{3}J =$ 10.0 Hz, ${}^{3}J = 6.7$ Hz, 1H, 6'-H), 1.74 (φ -oct, ${}^{3}J = 6.8$ Hz, 1H, 3-H), 2.12 (tt, ${}^{3}J = 7.0$ Hz, ${}^{3}J = 1.3$ Hz, 2H, 3'-H₂), 2.72 (td, ${}^{3}J = 6.9$ Hz, ${}^{3}J = 1.5$ Hz, 1H, 4'-H), 2.82 (d, ${}^{3}J = 6.9$ Hz, 1H, 2-H), 3.20 (td, ${}^{3}J = 10.0$ Hz, ${}^{3}J = 1.5$ Hz, 1H, 5'-H), 5.02–5.08 (m, 2H, 1'-H₂), 5.09 (d, ${}^{2}J = 12.1$ Hz, 1H, OCH_aH_b), 5.13 (d, ${}^{2}J = 12.2$ Hz, 1H, OCH_a H_b), 5.27 (d, ${}^{3}J = 9.9$ Hz, 1H, NHCO), 5.76 $(ddt, {}^{3}J = 17.8 Hz, {}^{3}J = 10.6 Hz, {}^{3}J = 7.2 Hz, 1H, 2'-H),$ 7.27–7.41 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 19.1$ (q, CHCH₃), 19.3 (q, CHCH₃), 19.8 (q, CHCH₃), 20.1 (q, CHCH₃), 28.2 (q, C(CH₃)₃), 31.2 (d, C-6'), 32.2 (d, C-3), 38.9 (t, C-3'), 55.9 (d, C-4'), 59.6 (d, C-5'), 66.5 (t, OCH₂), 68.5 (d, C-2), 81.1 (s, C(CH₃)₃), 117.9 (t, C-1'), 128.0 (d, Ph), 128.1 (d, 2C, Ph), 128.5 (d, 2C, Ph), 135.0 (d, C-2'), 137.0 (s, Ph), 156.7 (s, NHCO), 174.9 (s, C-1) ppm; IR (KBr): $\overline{v} = 3,343$ (N–H), 1,725 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 433 (100) $[(M + H)^+]$; HRMS (C₂₅H₄₁N₂O₄): calcd. 433.3066, found 433.3072.

33b: $R_{\rm f} = 0.38$ (hexanes-EtOAc 6:1); $[\alpha]_{\rm D}^{20} = -7.0 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.89$ (d, ${}^{3}J = 6.5$ Hz, 3H, CHCH₃), 0.91 (d, ${}^{3}J = 6.3$ Hz, 3H, CHCH₃), 0.92 (d, ${}^{3}J = 6.6$ Hz, 3H, CHCH₃), 0.93 (d, ${}^{3}J = 6.7$ Hz, 3H, CHCH₃), 1.46 (s, 9H, $C(CH_3)_3$, 1.61 (bs, 1H, CHNHCH), 1.75 (φ -oct, ${}^3J =$ 6.8 Hz, 1H, 3-H), 1.81 (φ -oct, ${}^{3}J = 6.7$ Hz, 1H, 6'-H), 1.99 (dt, ${}^{2}J = 13.6$ Hz, ${}^{3}J = 8.0$ Hz, 1H, 3'-H_a), 2.22 (dddt, ${}^{2}J = 13.8$ Hz, ${}^{3}J = 6.1$ Hz, ${}^{3}J = 4.3$ Hz, ${}^{4}J = 1.6$ Hz, 1H, 3'-H_b), 2.65 (dt, ${}^{3}J = 8.6$ Hz, ${}^{3}J = 4.4$ Hz, 1H, 4'-H), 3.00 (d, ${}^{3}J = 6.6$ Hz, 1H, 2-H), 3.55 (ddd, ${}^{3}J = 10.0$ Hz, ${}^{3}J = 7.5$ Hz, ${}^{3}J = 4.3$ Hz, 1H, 5'-H), 4.74 (d, ${}^{3}J = 10.3$ Hz, 1H, NHCO), 5.06 (d, ${}^{2}J = 12.3$ Hz, 1H, OCH_aH_b), 5.10 (d, ²J = 12.3 Hz, 1H, OCH_aH_b), 5.09–5.16 (m, 2H, 1'-H), 5.73-5.85 (m, 1H, 2'-H), 7.27-7.38 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 18.8$ (q, CHCH₃), 19.1 (q, CHCH₃), 19.2 (q, CHCH₃), 20.4 (q, CHCH₃), 28.2 (q, C(CH₃)₃), 29.4 (d, C-6'), 32.1 (d, C-3), 34.9 (t, C-3'), 56.6 (d, C-4'), 57.1 (d, C-5'), 65.7 (d, C-2), 66.6 (t, OCH₂), 80.7 (s, C(CH₃)₃), 118.0 (t, C-1'), 128.0 (d, Ph), 128.1 (d, 2C, Ph), 128.5 (2d, Ph), 135.3 (d, C-2'), 136.8 (s, Ph), 156.8 (s, NHCO), 175.0 (s, C-1) ppm; IR (KBr): $\overline{v} = 3,343$ (N–H), 1,724 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 433 (93), [(M + H)⁺]; HRMS (C₂₅H₄₀N₂O₄): calcd. 433.3066, found 433.3064.

tert-Butyl (2S,4'S,5'S) and (2S,4'R,5'S)-2-[5-(benzyloxy-carbonylamino)-6-methylhept-1-en-4-ylamino]-3-phenyl-propanoate (**34a**, **34b**, $C_{29}H_{40}N_2O_4$)

Aldimine **18** (6.50 g, 14.8 mmol), 1.94 g Zn (29.6 mmol), 552 mg CeCl₃·7H₂O (1.48 mmol), and 2.45 cm³ allyl bromide (28.2 mmol) were reacted according to GP 8 in 20 cm³ THF within 16 h. Chromatography (hexanes–EtOAc 6:1) yielded 3.74 g adduct **34a** (7.79 mmol, 53%) and 771 mg adduct **34b** (1.60 mmol, 11%) as colourless oils.

34a: $R_{\rm f} = 0.33$ (hexanes-EtOAc 6:1); $[\alpha]_{\rm D}^{20} = -43.2 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.86, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.79$ (d, ${}^{3}J = 6.7$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.84 (d, ${}^{3}J = 6.7$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 1.37 (s, 9H, C(CH₃)₃), 1.33–1.43 (m, 1H, 6'-H), 1.68 (bs, 1H, CHNHCH), 2.09 (tq, ${}^{3}J = 7.2$ Hz, ${}^{4}J$, ${}^{3}J = 1.4$ Hz, 2H, 3'-H₂), 2.72 (dd, ${}^{2}J = 13.3$ Hz, ${}^{3}J = 8.0$ Hz, 1H, 3-H_a), 2.74 (dt, ${}^{3}J = 7.1$ Hz, ${}^{3}J = 1.6$ Hz, 1H, 4'-H), 2.81 (dd, $^{2}J = 13.4$ Hz, $^{3}J = 6.7$ Hz, 1H, 3-H_b), 3.11 (td, $^{3}J =$ 10.0 Hz, ${}^{3}J = 1.4$ Hz, 1H, 5'-H), 3.30 (dd, ${}^{3}J = 7.9$ Hz, ${}^{3}J = 6.7$ Hz, 1H, 2-H), 5.01–5.13 (m, 2H, 1'-H, NHCO), 5.06 (d, ${}^{2}J = 12.5$ Hz, 1H, OCH_aH_b), 5.12 (d, ${}^{2}J =$ 12.3 Hz, 1H, OCH_aH_b), 5.73 (ddt, ${}^{3}J = 16.3$ Hz, ${}^{3}J = 10.7$ Hz, ${}^{3}J = 7.2$ Hz, 1H, 2'-H), 7.14–7.40 (m, 10H, 2 Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 19.7$ (q, CH(CH₃)_a(CH₃)_b), 19.9 (q, CH(CH₃)_a(CH₃)_b), 28.0 (q, C(CH₃)₃), 31.1 (d, C-6'), 38.8 (t, C-3'), 40.5 (t, C-3), 55.6 (d, C-4'), 59.5 (d, C-5'), 64.0 (d, C-2), 66.4 (t, OCH₂), 81.3 (s, C(CH₃)₃), 118.0 (t, C-1[']), 126.5 (d, Ph), 127.9 (d, 3C, Ph), 128.2 (d, 2C, Ph), 128.5 (d, 2C, Ph), 129.4 (2d, Ph), 134.9 (d, C-2'), 137.1, 137.8 (2s, 2 Ph), 156.6 (s, NHCO), 174.4 (s, C-1) ppm; IR (KBr): $\overline{v} = 3,400, 3,335$ (N–H), 1,725 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 481 (100) $[(M + H)^+]$; HRMS (C₂₉H₄₁N₂O₄): calcd. 481.3066, found 481.3071.

34b: $R_{\rm f} = 0.15$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = -21.3 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 1.07, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.85$ (d, ${}^{3}J = 6.7$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.88 (d, ${}^{3}J = 6.7$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 1.35 (s, 9H, $C(CH_3)_3$, 1.56 (bs, 1H, CHNHCH), 1.88 (septd, ${}^3J = 6.7$ Hz, ${}^{3}J = 6.2$ Hz, 1H, 6'-H), 2.03 (dddt, ${}^{2}J = 14.3$ Hz, ${}^{3}J = 7.2$ Hz, ${}^{3}J = 5.9$ Hz, ${}^{4}J = 1.3$ Hz, 1H, 3'-H_a), 2.12 (dddt, ${}^{2}J = 14.1$ Hz, ${}^{3}J = 7.0$ Hz, ${}^{3}J = 5.3$ Hz, ${}^{4}J = 1.4$ Hz, 1H, 3'-H_b), 2.59 (q, ${}^{3}J = 5.7$ Hz, 1H, 4'-H), 2.80 $(dd, {}^{2}J = 13.3 \text{ Hz}, {}^{3}J = 7.5 \text{ Hz}, 1\text{H}, 3\text{-H}_{a}), 2.90 (dd,$ $^{2}J = 13.4$ Hz, $^{3}J = 6.6$ Hz, 1H, 3-H_b), 3.51 (dt, $^{3}J =$ 10.1 Hz, ${}^{3}J = 5.7$ Hz, 1H, 5'-H), 3.52 (dd, ${}^{3}J = 7.6$ Hz, ${}^{3}J = 6.5$ Hz, 1H, 2-H), 4.89 (d, ${}^{3}J = 10.4$ Hz, 1H, NHCO), 4.93 (ddt, ${}^{3}J = 17.1$ Hz, ${}^{2}J = 1.9$ Hz, ${}^{4}J = 1.3$ Hz, 1H, 1'-H_{trans}), 4.96 (ddt, ${}^{3}J = 10.3$ Hz, ${}^{2}J = 2.0$ Hz, ${}^{4}J = 1.0$ Hz, 1H, 1'-H_{cis}), 5.07 (d, ${}^{2}J = 12.0$ Hz, 1H, OCH_aH_b), 5.11 (d, ²J = 12.3 Hz, 1H, OCH_aH_b), 5.73 (ddt,

 ${}^{3}J = 17.3$ Hz, ${}^{3}J = 10.2$ Hz, ${}^{3}J = 7.1$ Hz, 1H, 2'-H), 7.17–7.38 (m, 10H, 2 Ph) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 17.8$ (q, CH(CH₃)_a(CH₃)_b), 20.6 (q, CH(CH₃)_a(CH₃)_b), 28.0 (q, C(CH₃)₃), 28.7 (d, C-6'), 34.9 (t, C-3'), 40.1 (t, C-3), 57.3 (d, C-4'), 58.5 (d, C-5'), 61.2 (d, C-2), 66.6 (t, OCH₂), 81.0 (s, *C*(CH₃)₃), 117.1 (t, C-1'), 126.5 (d, Ph), 128.0 (d, Ph), 128.0 (d, 2C, Ph), 128.3 (d, 2C, Ph), 128.5 (d, 2C, Ph), 129.4 (2d, Ph), 135.5 (d, C-2'), 136.8, 137.7 (2s, 2 Ph), 156.8 (s, NHCO), 173.8 (s, C-1) ppm; IR (KBr): $\bar{\nu} = 3,403$, 3,337 (N–H), 1,725 (C=O) cm⁻¹; MS (FAB pos.): *m/z* (%) = 481 (35) [(M + H)⁺]; HRMS (C₂₉H₄₁N₂O₄): calcd. 481.3066, found 481.3061.

tert-Butyl (2S,4'S,5'S) and (2S,4'S,5'S)-2-[2-(*benzyloxy-carbonylamino*)*hex-5-en-3-ylamino*]-4-*methylpentanoate* (**35a**, **35b**, C₂₄H₃₈N₂O₄)

Aldimine 19 (1.07 g, 2.85 mmol), 373 mg Zn (5.70 mmol), 106 mg CeCl₃·7H₂O (0.29 mmol), and 470 mm³ allyl bromide (5.42 mmol) were reacted according to GP 8 in 4 cm³ THF within 16 h. Chromatography (hexanes-EtOAc 6:1) yielded a mixture of isomers 35a/35b (395 mg, 0.94 mmol, 33%) as a colourless oil. $R_{\rm f} = 0.40$ (hexanes-EtOAc 6:1). Spectroscopic data given for a mixture of isomers: Major isomer, selected data: ¹H NMR (400 MHz, CDCl₃): $\delta = 0.81$ (d, ${}^{3}J = 6.6$ Hz, 3H, $CH(CH_3)_a(CH_3)_b)$, 0.86 (d, ${}^{3}J = 6.7$ Hz, 3H, $CH(CH_3)_a$ $(CH_3)_b$), 1.05 (d, ${}^3J = 6.7$ Hz, 3H, 6'-H₃), 1.48 (s, 9H, C(CH₃)₃), 2.54 (td, ${}^{3}J = 7.2$ Hz, ${}^{3}J = 3.7$ Hz, 1H, 4'-H), 3.10 (dd, ${}^{3}J = 7.7$ Hz, ${}^{3}J = 6.7$ Hz, 1H, 2-H) ppm; ${}^{13}C$ NMR (100 MHz, CDCl₃): $\delta = 15.3$ (q, C-6'), 22.2 (q, $CH(CH_3)_a(CH_3)_b)$, 22.8 (q, $CH(CH_3)_a(CH_3)_b)$, 24.9 (d, C-4), 28.1 (q, C(CH₃)₃), 36.1 (t, C-3'), 43.8 (t, C-3), 47.7 (d, C-5'), 59.4 (d, C-4'), 60.7 (d, C-2), 66.4 (t, OCH₂), 81.0 (s, C(CH₃)₃), 117.9 (t, C-1'), 134.9 (d, C-2'), 136.8 (s, Ph), 156.1 (s, NHCO), 175.8 (s, C-1) ppm. Minor isomer, selected data: ¹H NMR (400 MHz, CDCl₃): $\delta = 0.85$ (d, ${}^{3}J = 6.6$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.87 (d, ${}^{3}J = 6.7$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 1.48 (s, 9H, C(CH₃)₃), 2.44 (td, ${}^{3}J = 6.9$ Hz, ${}^{3}J = 2.1$ Hz, 1H, 4'-H), 3.13–3.20 (m, 1H, 2-H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 19.0$ (q, C-6'), 22.5 (q, $CH(CH_3)_a(CH_3)_b$), 22.8 (q, $CH(CH_3)_a(CH_3)_b$), 24.8 (d, C-4), 28.1 (q, C(CH₃)₃), 37.6 (t, C-3'), 43.7 (t, C-3), 48.7 (d, C-5'), 59.1 (d, C-2), 59.4 (d, C-4'), 66.5 (t, OCH₂), 81.0 (s, C(CH₃)₃), 117.9 (t, C-1'), 135.1 (d, C-2'), 136.8 (s, Ph), 155.9 (s, NHCO), 175.5 (s, C-1) ppm; IR (KBr): $\overline{v} = 3,339$ (N–H), 1,727 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 419 (100) [(M + H)⁺]; HRMS (C₂₄H₃₉N₂O₄): calcd. 41.2910, found 419.2908.

tert-Butyl (2R,4'S,5'S) and (2R,4'R,5'S)-2-[5-(benzyloxy-carbonylamino)-7-methyloct-1-en-4-ylamino]-3-methylbut-anoate (**41a**, **41b**, $C_{26}H_{42}N_2O_4$)

Aldimine **40** (404 mg, 1.00 mmol), 131 mg Zn (2.00 mmol), 37 mg CeCl₃·7H₂O (0.10 mmol), and 170 mm³ allyl bromide (1.90 mmol) were reacted according to GP 8 in 4 cm³ THF within 16 h. Chromatography (hexanes–Et₂O 10:1 \rightarrow 8:1) yielded 95 mg adduct **41a** (0.21 mmol, 21%) and 80 mg adduct **41b** (0.18 mmol, 18%) as colourless oils.

41a: $R_{\rm f} = 0.47$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = +30.5 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.93, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.91$ (d, ${}^{3}J = 6.4$ Hz, 3H, CHCH₃), 0.92 (d, ${}^{3}J = 6.5$ Hz, 3H, CHCH₃), 0.93 (d, ${}^{3}J = 6.0$ Hz, 3H, CHCH₃), 0.94 (d, ${}^{3}J = 6.8$ Hz, 3H, CHCH₃), 1.32 (ddd, $^{2}J = 13.6$ Hz, $^{3}J = 8.2$ Hz, $^{3}J = 5.5$ Hz, 1H, 6'-H_a), 1.35–1.50 (bs, 1H, CHNHCH), 1.37 (ddd, ${}^{2}J = 14.0$ Hz, ${}^{3}J = 8.7$ Hz, ${}^{3}J = 5.4$ Hz, 1H, 6'-H_b), 1.47 (s, 9H, $C(CH_3)_3$, 1.64 (φ -dsept, ${}^{3}J = 8.1$ Hz, ${}^{3}J = 6.5$ Hz, 1H, 7'-H), 1.77 (φ -oct, ${}^{3}J = 6.7$ Hz, 1H, 3-H), 2.08 (ddd, $^{2}J = 13.6$ Hz, $^{3}J = 7.8$ Hz, $^{3}J = 6.8$ Hz, 1H, 3'-H_a), 2.16 $(dtt, {}^{2}J = 13.9 \text{ Hz}, {}^{3}J = 6.9 \text{ Hz}, {}^{4}J = 1.4 \text{ Hz}, 1\text{H}, 3'-\text{H}_{h}),$ 2.48 (td, ${}^{3}J = 7.0$ Hz, ${}^{3}J = 1.9$ Hz, 1H, 4'-H), 2.89 (d, ${}^{3}J = 6.4$ Hz, 1H, 2-H), 3.72 (tdd, ${}^{3}J = 9.2$ Hz, ${}^{3}J = 5.7$ Hz, ${}^{3}J = 1.8$ Hz, 1H, 5'-H), 5.03 (d, ${}^{3}J = 9.3$ Hz, 1H, NHCO), 5.04–5.11 (m, 2H, 1'-H₂), 5.07 (d, ${}^{2}J = 12.3$ Hz, 1H, OCH_aH_b), 5.11 (d, ${}^{2}J = 12.2$ Hz, 1H, OCH_aH_b), 5.78 $(ddt, {}^{3}J = 17.4 \text{ Hz}, {}^{3}J = 10.1 \text{ Hz}, {}^{3}J = 7.3 \text{ Hz}, 1\text{H}, 2'-\text{H}),$ 7.28–7.40 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 18.9 (q, CH(CH_3)_a(CH_3)_b), 19.5 (q, CH(CH_3)_a(CH_3)_b),$ 22.3 (q, CH₂CH(CH₃)_a(CH₃)_b), 23.3 (q, CH₂CH(CH₃)_a (CH₃)_b), 24.9 (d, C-7'), 28.2 (q, C(CH₃)₃), 32.2 (d, C-3), 37.7 (t, C-3'), 42.4 (t, C-6'), 51.2 (d, C-5'), 58.9 (d, C-4'), 66.5 (t, OCH₂), 68.0 (d, C-2), 81.0 (s, C(CH₃)₃), 117.8 (t, C-1'), 128.0 (d, Ph), 128.1 (d, 2C, Ph), 128.5 (d, 2C, Ph), 135.3 (d, C-2'), 136.9 (s, Ph), 156.2 (s, NHCO), 174.9 (s, C-1) ppm; IR (KBr): $\overline{v} = 3.340$ (N–H), 1.725 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 447 (30) [(M + H)⁺]; HRMS (C₂₆H₄₃N₂O₄): calcd. 447.3223, found 447.3226.

41b: $R_{\rm f} = 0.43$ (hexanes–EtOAc 6:1); $[\alpha]_{\rm D}^{20} = -0.8 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.88, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.89$ (d, ${}^{3}J = 6.8$ Hz, 3H, CHCH₃), 0.90 (d, ${}^{3}J = 6.9$ Hz, 3H, CHCH₃), 0.91 (d, ${}^{3}J = 7.0$ Hz, 3H, CHCH₃), 0.92 (d, ${}^{3}J = 7.1$ Hz, 3H, CHCH₃), 1.15–1.45 (m, 3H, 6'-H₂, CHNHCH), 1.46 (s, 9H, C(CH₃)₃), 1.58-1.71 (m, 1H, 7'-H), 1.80 (φ -oct, ${}^{3}J = 6.8$ Hz, 1H, 3-H), 2.11 (t, ${}^{3}J = 7.1$ Hz, 2H, 3'-H₂), 2.57 (td, ${}^{3}J = 7.1$ Hz, ${}^{3}J = 3.4$ Hz, 1H, 4'-H), 2.91 (d, ${}^{3}J = 7.0$ Hz, 1H, 2-H), 3.76–3.86 (m, 1H, 5'-H), 5.01–5.13 (m, 5H, 1'-H₂, NHCO, OCH₂), 5.67–5.80 (m, 1H, 2'-H), 7.25–7.38 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 18.4$ (q, $CH(CH_3)_a(CH_3)_b)$, 19.3 (q, $CH(CH_3)_a(CH_3)_b)$, 21.9 (q, $CH_2CH(CH_3)_a(CH_3)_b)$, 23.6 (q, $CH_2CH(CH_3)_a(CH_3)_b)$, 24.7 (d, C-7'), 28.1 (q, C(CH₃)₃), 32.4 (d, C-3), 36.3 (t, C-3'), 38.8 (t, C-6'), 50.3 (d, C-5'), 60.1 (d, C-4'), 66.2 (d, C-2), 66.4 (t, OCH₂), 81.0 (s, $C(CH_3)_3$), 117.6 (t, C-1'), 127.9 (d, 3C, Ph), 128.4 (d, 2C, Ph), 135.1 (d, C-2'), 136.9 (s, Ph), 156.3 (s, NHCO), 175.1 (s, C-1) ppm; IR (KBr): $\overline{\nu}$ = 3,345 (N–H), 1,725 (C=O) cm⁻¹; MS (FAB pos.): *m/z* (%) = 447 (65) [(M + H)⁺]; HRMS (C₂₆H₄₃N₂O₄): calcd. 447.3223, found 447.3221.

Synthesis of alcohols via hydroboration

General procedure (GP 9) for synthesis of alcohols via hydroboration

A solution of the alkene (prepared according to GP 8, 1 mmol) in 5 cm³ anhydrous THF was added at 0 °C under an argon atmosphere to 4 cm³ 9-BBN (0.5 M in THF, 2 mmol). The mixture was warmed to room temperature and stirred for 3 h. NaOH (3 M, 5.50 cm³), 7.80 cm³ H₂O₂ (30%), and 1 g NaOH were added at 0 °C and the mixture was extracted with Et₂O (3×20 cm³). The combined organic layers were washed with 40 cm³ brine, dried (Na₂SO₄), concentrated, and purified by chromatography (silica gel).

tert-Butyl (3S,4S,2'S)-4-[1-(*tert-butyldimethylsilyloxy*)-2*propylamino*]-7-*hydroxy*-2-*methyl*-3-*heptylcarbamate* (**42a**, C₂₂H₄₈N₂O₄Si)

Alkene **20a** (237 mg, 0.57 mmol) and 2.30 cm^3 of a solution of 9-BBN (0.5 M in THF, 1.14 mmol) in 5 cm³ anhydrous THF were reacted according to GP 9 within 3 h at room temperature. Purification by chromatography (hexanes-EtOAc $3:1 \rightarrow 2:1$) yielded 216 mg alcohol 42 (0.50 mmol, 87%) as a colourless oil. $R_{\rm f} = 0.51$ (hexanes-EtOAc 1:1); $[\alpha]_{D}^{20} = +0.4 \times 10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 1.14, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.06$ (s, 3H, $Si(CH_3)_a(CH_3)_b)$, 0.06 (s, 3H, $Si(CH_3)_a(CH_3)_b)$, 0.90 (s, 9H, SiC(CH₃)₃), 0.91 (d, ${}^{3}J = 6.3$ Hz, 3H, CH(CH₃)_a $(CH_3)_b$, 0.94 (d, ${}^{3}J = 6.3$ Hz, 3H, $CH(CH_3)_a(CH_3)_b$), 0.92 $(d, {}^{3}J = 6.3 \text{ Hz}, 3\text{H}, 3'-\text{H}_{3}), 1.43 (s, 9\text{H}, OC(CH_{3})_{3}), 1.35-$ 1.87 (m, 7H, 7-H₂, 6-H₂, 3-H, OH, CHNHCH), 2.64 (ddd, ${}^{3}J = 8.3$ Hz, ${}^{3}J = 4.0$ Hz, ${}^{3}J = 2.9$ Hz, 1H, 5-H), 2.79 $(\varphi$ -dquint, ${}^{3}J = 6.4$ Hz, ${}^{3}J = 4.3$ Hz, 1H, 2'-H), 3.27 (ddd, ${}^{3}J = 10.4$ Hz, ${}^{3}J = 8.6$ Hz, ${}^{3}J = 2.7$ Hz, 1H, 4-H), 3.36 $(dd, {}^{3}J = 9.8 \text{ Hz}, {}^{3}J = 6.8 \text{ Hz}, 1\text{H}, 1'-\text{H}_{a}), 3.53 (dd,$ ${}^{2}J = 9.8$ Hz, ${}^{3}J = 4.4$ Hz, 1H, 1'-H_b), 3.53 (ddd, ${}^{2}J = 10.9$ Hz, ${}^{3}J = 7.4$ Hz, ${}^{3}J = 4.9$ Hz, 1H, 1-H_a), 3.66 (dt, ${}^{2}J = 11.0 \text{ Hz}$, ${}^{3}J = 5.7 \text{ Hz}$, 1H, 1-H_b), 4.76 (d, ${}^{3}J = 10.3$ Hz, 1H, NHCO) ppm; ${}^{13}C$ NMR (100 MHz, CDCl₃): $\delta = -5.4$ (q, Si(CH₃)_a(CH₃)_b), -5.3 (q, Si(CH₃)_a (CH₃)_b), 17.5 (q, C-3'), 18.2 (s, SiC(CH₃)₃), 19.1 (q, CH(CH₃)_a(CH₃)_b), 20.2 (q, CH(CH₃)_a(CH₃)_b), 25.9 (q, SiC(CH₃)₃), 28.4 (q, OC(CH₃)₃), 28.8 (t, C-6), 29.4 (t, C-7), 29.6 (d, C-3), 52.3 (d, C-2'), 54.4 (d, C-5), 58.2 (d, C-4), 62.7 (t, C-8), 67.4 (t, C-1'), 78.9 (s, SiC(CH₃)₃), 156.8 (s, NHCO) ppm; IR (KBr): $\overline{v} = 3,341$ (N–H, O–H), 1,697 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 433 (100) $[(M + H)^+]$; HRMS (C₂₂H₄₉N₂O₄Si): calcd. 433.3462, found 433.3458.

Benzyl (3S,4S,2'S)-4-[1-(tert-butyldiphenylsilyloxy)-2-propylamino]-7-hydroxy-2-methyl-3-heptylcarbamate (**43a**, C₃₅H₅₀N₂O₄Si)

Alkene **22a** (1.22 g, 2.13 mmol) and 8.50 cm^3 of a solution of 9-BBN (0.5 M in THF, 4.26 mmol) in 10 cm³ anhydrous THF were reacted according to GP 9 within 3 h at room temperature. Purification by chromatography (hexanes-EtOAc 3:1 \rightarrow 2:1) yielded 1.23 g alcohol 43a (2.08 mmol, 97%) as a colourless oil. $R_{\rm f} = 0.50$ (hexanes–EtOAc 1:1); $[\alpha]_{D}^{20} = -5.0 \times 10^{-1} \text{ deg cm}^{2} \text{ g}^{-1} (c = 0.67, \text{ CHCl}_{3}); {}^{1}\text{H}$ NMR (400 MHz, CDCl₃): $\delta = 0.90$ (d, ${}^{3}J = 6.3$ Hz, 3H, CHCH₃), 0.91 (d, ${}^{3}J = 6.6$ Hz, 3H, CHCH₃), 0.92 (d, ${}^{3}J = 6.7$ Hz, 3H, CHCH₃), 1.04 (s, 9H, SiC(CH₃)₃), 1.30-1.41 (m, 1H, 5-H_a), 1.41–1.77 (m, 5H, 6-H₂, 5-H_b, OH, CHNHCH), 1.77-1.87 (m, 1H, 2-H), 2.65 (ddd, ${}^{3}J = 8.5$ Hz, ${}^{3}J = 4.2$ Hz, ${}^{3}J = 2.3$ Hz, 1H, 4-H), 2.80 (td, ${}^{3}J = 6.4$ Hz, ${}^{3}J = 4.3$ Hz, 1H, 2'-H), 3.30 (ddd, ${}^{3}J = 10.4$ Hz, ${}^{3}J = 9.0$ Hz, ${}^{3}J = 2.3$ Hz, 1H, 3-H), 3.42 (dd, ${}^{2}J = 9.9$ Hz, ${}^{3}J = 6.6$ Hz, 1H, 1'-H_a), 3.53 (ddd, $^{2}J = 10.6$ Hz, $^{3}J = 7.0$ Hz, $^{3}J = 5.4$ Hz, 1H, 7-H_a), 3.58 $(dd, {}^{2}J = 9.8 \text{ Hz}, {}^{3}J = 4.2 \text{ Hz}, 1\text{H}, 1'-\text{H}_{b}), 3.54-3.63 \text{ (m},$ 1H, 7-H_b), 5.02 (d, ${}^{3}J = 10.2$ Hz, 1H, NHCO), 5.07 (d, ${}^{2}J = 12.3$ Hz, 1H, CH_aH_bPh), 5.12 (d, ${}^{2}J = 12.3$ Hz, 1H, CH_aH_bPh), 7.26–7.45 (m, 11H, 3 Ph), 7.62–7.66 (m, 4H, 3 Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 17.7$ (q, C-3'), 19.3 (q, $CH(CH_3)_a(CH_3)_b$), 20.1 (q, $CH(CH_3)_a(CH_3)_b$), 26.9 (s, C(CH₃)₃), 29.1 (t, C-3'), 29.5 (t, C-6), 29.9 (d, C-2), 52.5 (d, C-2'), 54.2 (d, C-4), 59.0 (d, C-3), 62.8 (t, C-7), 66.7 (t, CH₂Ph), 68.2 (t, C-1'), 127.7 (d, 4C, Ph), 128.0 (d, 3C, Ph), 128.5 (d, 2C, Ph), 129.7 (d, 2C, Ph), 133.5 (s, Ph), 133.5 (s, Ph), 135.6 (d, 2C, Ph), 135.6 (2d, Ph), 136.8 (s, Ph), 157.1 (s, NHCO) ppm; IR (KBr): $\bar{\nu} = 3,420$ (N–H, O– H), 1,708 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 591 (100) $[(M + H)^+]$; HRMS $(C_{35}H_{51}N_2O_4Si)$: calcd. 591.3618, found 591.3616.

tert-Butyl (3S,4S,2'S)-4-[1-(*tert-butyldimethylsilyloxy*)-3phenyl-2-propylamino]-7-hydroxy-2-methyl-3-heptylcarbamate (**44a**, C₂₈H₅₂N₂O₄Si)

Alkene **24a** (1.18 g, 2.40 mmol) and 9.60 cm³ of a solution of 9-BBN (0.5 M in THF, 4.80 mmol) in 10 cm³ anhydrous THF were reacted according to GP 9 within 3 h at room temperature. Purification by chromatography (hexanes–EtOAc 3:1 \rightarrow 2:1) yielded 1.02 g alcohol **44a** (2.00 mmol, 83%) as a colourless solid. $R_{\rm f} = 0.62$ (hexanes–EtOAc 1:1); $[\alpha]_{\rm D}^{20} = +38.5 \times 10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 1.03, CHCl₃); m.p.: 117–119 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.03$ (s, 3H, Si(CH₃)_a(CH₃)_b), 0.04 (s, 3H, Si(CH₃)_a(CH₃)_b), 0.79 (d, ³J = 6.7 Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.85 (d, ³J = 6.6 Hz, 3H, CH(CH₃)_a (CH₃)_b), 0.91 (s, 9H, SiC(CH₃)₃), 1.43 (s, 9H, OC(CH₃)₃), 1.38–1.72 (m, 7H, 6-H₂, 5-H₂, 2-H, OH, CHN*H*CH), 2.63 (φ -d, ³J = 7.0 Hz, 2H, 3'-H₂), 2.71 (ddd, ³J = 7.5 Hz,

 ${}^{3}J = 5.1$ Hz, ${}^{3}J = 2.3$ Hz, 1H, 4-H), 2.80 (φ -tt, ${}^{3}J =$ 6.9 Hz, ${}^{3}J = 4.6$ Hz, 1H, 2'-H), 3.14 (ddd, ${}^{3}J = 10.1$ Hz, ${}^{3}J = 9.1$ Hz, ${}^{3}J = 2.3$ Hz, 1H, 3-H), 3.42 (dd, ${}^{3}J =$ 10.0 Hz, ${}^{3}J = 4.8$ Hz, 1H, 1'-H_a), 3.53 (dd, ${}^{2}J = 9.9$ Hz, ${}^{3}J = 4.2$ Hz, 1H, 1'-H_b), 3.59 (ddd, ${}^{2}J = 10.6$ Hz, ${}^{3}J = 7.1$ Hz, ${}^{3}J = 5.3$ Hz, 1H, 7-H_a), 3.64 (φ -td, ${}^{3}J = 5.5$ Hz, ${}^{3}J$, ${}^{2}J = 11.1$ Hz, 1H, 7-H_b), 4.65 (d, ${}^{3}J = 10.2$ Hz, 1H, NHCO), 7.15-7.33 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = -5.5$ (q, Si(CH₃)_a(CH₃)_b), -5.4 $(q, Si(CH_3)_a(CH_3)_b)$, 18.2 (s, SiC(CH_3)_3), 19.4 (q, $CH(CH_3)_a(CH_3)_b)$, 20.1 (q, $CH(CH_3)_a(CH_3)_b)$, 25.9 (q, SiC(CH₃)₃), 28.5 (q, OC(CH₃)₃), 29.5 (t, C-6 or C-5), 29.6 (t, C-6 or C-5), 29.9 (d, C-2), 38.9 (t, C-3'), 54.7 (d, C-4), 58.6 (d, C-3), 59.6 (d, C-2'), 62.7 (t, C-7), 64.3 (t, C-1'), 78.7 (s, OC(CH₃)₃), 126.1 (d, Ph), 128.3 (d, 2C, Ph) 129.3 (d, 2C, Ph), 139.7 (s, Ph), 156.7 (s, NHCO) ppm; IR (KBr): $\overline{v} = 3,367, 3,183$ (N–H, O–H), 1,709 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 509 (100) [(M + H)⁺]; HRMS (C₂₈H₅₃N₂O₄Si): calcd. 509.3775, found 509.3777.

Benzyl (4S,5S,2'S)-5-[1-(tert-butyldimethylsilyloxy)-3-phenyl-2-propylamino]-8-hydroxy-2-methyl-4-octylcarbamate (45a, $C_{32}H_{52}N_2O_4Si$)

Alkene 25a (1.50 g, 2.79 mmol) and 11.2 cm^3 of a solution of 9-BBN (0.5 M in THF, 5.58 mmol) in 10 cm³ anhydrous THF were reacted according to GP 9 within 3 h at room temperature. Purification by chromatography (hexanes-EtOAc $3:1 \rightarrow 2:1$) yielded 1.23 g alcohol 45a (2.21 mmol, 79%) as a colourless oil. $R_{\rm f} = 0.61$ (hexanes-EtOAc 1:1); $[\alpha]_{D}^{20} = -57.6 \times 10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ $(c = 0.685, \text{ CHCl}_3);$ ¹H NMR (400 MHz, CDCl₃): $\delta = 0.04$ (s, 3H, Si(CH₃)_a(CH₃)_b), 0.05 (s, 3H, Si(CH₃)_a) $(CH_3)_b$, 0.80 (d, ${}^{3}J = 6.6$ Hz, 3H, $CH(CH_3)_a(CH_3)_b$), 0.82 (d, ${}^{3}J = 6.6$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.91 (s, 9H, C(CH₃)₃), 1.09 (ddd, ${}^{2}J = 13.0$ Hz, ${}^{3}J = 9.7$ Hz, ${}^{3}J = 4.8$ Hz, 1H, 3-H_a), 1.34 (ddd, ${}^{2}J = 13.9$ Hz, ${}^{3}J = 6.9$ Hz, ${}^{3}J = 2.9$ Hz, 1H, 3-H_b), 1.39–1.74 (m, 5H, 7-H₂, 6-H₂, 2-H), 1.89 (bs, 2H, CHNHCH, OH), 2.55 (td, ${}^{3}J = 6.6$ Hz, ${}^{3}J = 2.2$ Hz, 1H, 5-H), 2.59 (dd, ${}^{2}J = 13.3$ Hz, ${}^{3}J =$ 7.4 Hz, 1H, 3'-H_a), 2.71 (dd, ${}^{2}J = 13.3$ Hz, ${}^{3}J = 6.5$ Hz, 1H, 3'-H_b), 2.81 (tt, ${}^{3}J = 6.9$ Hz, ${}^{3}J = 4.2$ Hz, 1H, 2'-H), 3.47 (dd, ${}^{2}J = 10.0$ Hz, ${}^{3}J = 4.0$ Hz, 1H, 1'-H_a), 3.54 (dd, $^{2}J = 10.0$ Hz, $^{3}J = 4.4$ Hz, 1H, 1'-H_b), 3.59 (φ -t, $^{3}J = 6.1$ Hz, 2H, 8-H₂), 3.66 (tdd, ${}^{3}J = 9.9$ Hz, ${}^{3}J = 4.4$ Hz, ${}^{3}J = 2.0$ Hz, 1H, 4-H), 4.83 (d, ${}^{3}J = 9.6$ Hz, 1H, NHCO), 5.05 (d, ${}^{2}J = 12.3$ Hz, 1H, OCH_aH_bPh), 5.08 (d, $^{2}J = 12.5$ Hz, 1H, OCH₂H_bPh), 7.17–7.39 (m, 10H, 2 Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = -5.4$ (q, Si(CH₃)₂), 18.3 (s, SiC(CH₃)₃), 22.0 (q, CH(CH₃)_a(CH₃)_b), 23.3 (q, CH(CH₃)_a(CH₃)_b), 24.8 (d, C-2), 25.9 (q, SiC(CH₃)₃), 29.5 (t, C-6), 29.9 (t, C-7), 39.2 (t, C-3'), 41.6 (t, C-3), 51.3 (d, C-4), 57.9 (d, C-5), 59.8 (d, C-2'), 62.7 (t, C-8), 63.8 (t, C-1'), 66.5 (t, OCH₂Ph) ppm; IR (KBr): $\overline{v} = 3,408, 3,340$ (N–H, O–H), 1,705 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 557 (100) [(M + H)⁺]; HRMS (C₃₂H₅₃N₂O₄Si): calcd. 557.3775, found 557.3771.

Benzyl (4*S*,5*S*,2'*S*)-5-[1-(*tert-butyldimethylsilyloxy*)-3-phenyl-2-propylamino]-8-hydroxy-2-methyloct-4-ylcarbamate (**45b**, C₃₂H₅₂N₂O₄Si)

Alkene 25a (940 mg, 1.74 mmol) and 7.00 cm^3 of a solution of 9-BBN (0.5 M in THF, 3.48 mmol) in 10 cm³ anhydrous THF were reacted according to GP 9 within 3 h at room temperature. Purification by chromatography (hexanes-EtOAc $3:1 \rightarrow 2:1$) yielded 788 mg alcohol **45b** (1.42 mmol, 81%) as a colourless oil. $R_{\rm f} = 0.54$ (hexanes-EtOAc 1:1); $[\alpha]_{D}^{20} = +11.9 \times 10^{-1} \text{ deg cm}^2 \text{ g}^{-1} (c = 1.06,$ CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.01$ (s, 3H, Si(CH₃)_a(CH₃)_b), 0.02 (s, 3H, Si(CH₃)_a(CH₃)_b), 0.87 (d, ${}^{3}J = 6.3$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.88 (d, ${}^{3}J = 6.3$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.89 (s, 9H, C(CH₃)₃), 1.04 (ddd, $^{2}J = 14.5 \text{ Hz}, ^{3}J = 9.5 \text{ Hz}, ^{3}J = 3.5 \text{ Hz}, 1\text{H}, 3\text{-H}_{a}), 1.14$ (ddd, ${}^{2}J = 13.7$ Hz, ${}^{3}J = 10.7$ Hz, ${}^{3}J = 4.2$ Hz, 1H, 3-H_b), 1.23-1.36 (m, 1H, 6-H_a), 1.44-1.74 (m, 4H, 6-H_b, 2-H₂, 2-H), 2.45 (bs, 2H, OH, CHNHCH), 2.55 (dd, $^{2}J = 13.4$ Hz, $^{3}J = 7.2$ Hz, 1H, 3'-H_a), 2.66 (dd, $^{2}J =$ 13.4 Hz, ${}^{3}J = 6.7$ Hz, 1H, 3'-H_b), 2.72 (ddd, ${}^{3}J = 8.2$ Hz, ${}^{3}J = 5.2$ Hz, ${}^{3}J = 3.2$ Hz, 1H, 5-H), 2.96–3.04 (m, 1H, 2'-H), 3.47 (dd, ${}^{2}J = 10.1$ Hz, ${}^{3}J = 5.6$ Hz, 1H, 1'-H_a), 3.52 $(dd, {}^{2}J = 10.1 \text{ Hz}, {}^{3}J = 4.5 \text{ Hz}, 1\text{H}, 1'-\text{H}_{b}), 3.56 (ddd,$ ${}^{2}J = 10.7$ Hz, ${}^{3}J = 7.4$ Hz, ${}^{3}J = 4.9$ Hz, 1H, 8-H_a), 3.65 $(dt, {}^{2}J = 11.0 \text{ Hz}, {}^{3}J = 5.5 \text{ Hz}, 1\text{H}, 8\text{-H}_{b}), 3.80 (tt, {}^{3}J =$ 10.1 Hz, ${}^{3}J = 3.2$ Hz, 1H, 4-H), 4.52 (d, ${}^{3}J = 10.1$ Hz, 1H, NHCO), 5.03 (d, ${}^{2}J = 12.4$ Hz, 1H, OCH_aH_bPh), 5.06 $(d, {}^{2}J = 12.2 \text{ Hz}, 1\text{H}, \text{OCH}_{a}H_{b}\text{Ph}), 7.14-7.37 \text{ (m, 10H, 2)}$ Ph) ppm; {}^{13}C NMR (100 MHz, CDCl₃): $\delta = -5.4$ $(q, Si(CH_3)_a(CH_3)_b), -5.4 (q, Si(CH_3)_a(CH_3)_b), 18.2 (s,$ C(CH₃)₃), 21.8 (q, C-1), 23.7 (q, C-1), 24.7 (d, C-2), 25.9 (q, SiC(CH₃)₃), 29.1 (t, C-7), 30.1 (t, C-6), 39.1 (t, C-3), 39.3 (t, C-3'), 50.9 (d, C-4), 58.3 (d, C-5), 59.1 (d, C-2'), 62.7 (t, C-8), 65.0 (t, C-1'), 66.6 (t, OCH₂Ph), 126.2 (d, Ph), 128.0 (d, 2C, Ph), 128.0 (d, Ph), 128.4 (d, 2C, Ph), 128.5 (d, 2C, Ph), 129.4 (2d, Ph), 136.7 (s, Ph), 139.2 (s, Ph), 156.2 (s, NHCO) ppm; IR (KBr): $\overline{v} = 3,400, 3,331$ (N–H, O–H), 1,718 (C=O) cm⁻¹; MS (FAB pos.): m/z $(\%) = 557 (10) [(M + H)^+];$ HRMS $(C_{32}H_{53}N_2O_4Si):$ calcd. 557.3775, found 557.3770.

Benzyl (3*S*,4*S*,2'*S*)-4-[1-(tert-butyldimethylsilyloxy)-2-propylamino]-7-hydroxy-2-methyl-3-heptylcarbamate (**46b**, C₂₅H₄₆N₂O₄Si)

Alkene **27a** (1.85 g, 4.12 mmol) and 16.5 cm³ of a solution of 9-BBN (0.5 M in THF, 8.24 mmol) in 20 cm³ anhydrous THF were reacted according to GP 9 within 3 h at room temperature. Purification by chromatography (hexanes–EtOAc $3:1 \rightarrow 2:1$) yielded 1.71 g alcohol **46b** (3.67 mmol, 89%) as a colourless oil. $R_{\rm f} = 0.46$

(hexanes-EtOAc 1:1); $[\alpha]_{D}^{20} = +0.8 \times 10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ $(c = 0.95, \text{CHCl}_3);$ ¹H NMR (400 MHz, CDCl₃): $\delta = 0.04$ (s, 6H, Si(CH₃)₂), 0.88 (s, 9H, C(CH₃)₃), 0.91 (d, ${}^{3}J = 6.3$ Hz, 3H, CHCH₃), 0.92 (d, ${}^{3}J = 6.8$ Hz, 3H, CHCH₃), 0.95 (d, ${}^{3}J = 6.6$ Hz, 3H, CHCH₃), 1.33–1.45 (m, 1H, 5- H_a), 1.47–1.87 (m, 5H, 5- H_b , 6- H_2 , OH, CHN*H*CH), 1.78 (φ -dquint, ${}^{3}J = 8.8$ Hz, ${}^{3}J = 6.7$ Hz, 1H, 2-H), 2.69 (ddd, ${}^{3}J = 8.0$ Hz, ${}^{3}J = 4.6$ Hz, ${}^{3}J = 2.5$ Hz, 1H, 4-H), 2.76 (φ -quintd, ${}^{3}J = 6.4$ Hz, ${}^{3}J = 4.2$ Hz, 1H, 2'-H), 3.30 (ddd, ${}^{3}J = 10.3$ Hz, ${}^{3}J = 8.7$ Hz, ${}^{3}J =$ 2.5 Hz, 1H, 3-H), 3.34 (dd, ${}^{2}J = 9.8$ Hz, ${}^{3}J = 6.4$ Hz, 1H, 1'-H_a), 3.52 (dd, ${}^{2}J = 9.8$ Hz, ${}^{3}J = 4.2$ Hz, 1H, 1'-H_b), $3.56 (ddd, {}^{2}J = 10.7 \text{ Hz}, {}^{3}J = 7.1 \text{ Hz}, {}^{3}J = 5.5 \text{ Hz}, 1\text{H}, 7\text{-}$ H_a), 3.63 (dt, ${}^{2}J = 10.6$ Hz, ${}^{3}J = 5.9$ Hz, 1H, 7-H_b), 5.07 (d, ${}^{2}J = 12.3$ Hz, 1H, CH_aH_bPh), 5.10 (d, ${}^{3}J = 9.1$ Hz, 1H, NHCO), 5.11 (d, ${}^{2}J = 12.3$ Hz, 1H, CH_aH_bPh), 7.27– 7.37 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = -5.4$ (q, Si(CH₃)_a(CH₃)_b), -5.3 (q, Si(CH₃)_a(CH₃)_b), 17.7 (q, C-3'), 18.2 (s, C(CH₃)₃), 19.2 (q, CH(CH₃)_a) (CH₃)_b), 20.2 (q, CH(CH₃)_a(CH₃)_b), 25.9 (q, C(CH₃)₃), 29.3 (t, C-6 or C-5), 29.4 (t, C-6 or C-5), 29.9 (d, C-2), 52.7 (d, C-2'), 54.3 (d, C-4), 59.1 (d, C-3), 62.8 (t, C-7), 66.6 (t, CH₂Ph), 67.2 (t, C-1'), 128.0 (d, 2C, Ph), 128.0 (d, Ph), 128.5 (2d, Ph), 136.9 (s, Ph), 157.1 (s, NHCO) ppm; IR (KBr): $\overline{v} = 3,326$ (N–H, O–H), 1,703 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 467 (100) [(M + H)⁺]; HRMS (C₂₅H₄₇N₂O₄Si): calcd. 467.3305, found 467.3308.

tert-Butyl (2*S*,4'*R*,5'*S*)-2-[5-(*benzyloxycarbonylamino*)-1*hydroxy*-6-*methyl*-4-*heptylamino*]*propanoate*

 $(\textbf{47b},\,C_{23}H_{38}N_2O_5)$

Alkene **30b** (309 mg, 0.76 mmol) and 3.10 cm^3 of a solution of 9-BBN (0.5 M in THF, 1.52 mmol) in 5 cm³ anhydrous THF were reacted according to GP 9 within 3 h at room temperature. Purification by chromatography (hexanes-EtOAc 2:1 \rightarrow 1:1) yielded 200 mg alcohol 47b (0.47 mmol, 62%) as a colourless oil. $R_{\rm f} = 0.30$ (hexanes-EtOAc 2:1); $[\alpha]_{D}^{20} = -1.4 \times 10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.74, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.91$ (d, ${}^{3}J = 6.7$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.95 (d, ${}^{3}J = 6.7$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 1.16 (ddt, ${}^{3}J = 6.7$ Hz, ${}^{3}J =$ 9.8 Hz, ${}^{2}J = 13.7$ Hz, 1H, 3'-H_a), 1.21 (d, ${}^{3}J = 6.8$ Hz, 3H, 3-H₃), 1.46 (s, 9H, C(CH₃)₃), 1.59 (ddt, ${}^{2}J = 13.8$ Hz, ${}^{3}J = 7.0 \text{ Hz}, {}^{3}J = 2.7 \text{ Hz}, 1\text{H}, 3'-\text{H}_{b}), 1.67 \text{ (dsept,}$ ${}^{3}J = 7.7$ Hz, ${}^{3}J = 6.7$ Hz, 1H, 6'-H), 1.67–1.76 (m, 2H, 2'-H₂), 2.68 (bs, 2H, OH, CHNHCH), 2.68 (dt, ${}^{3}J = 9.8$ Hz, ${}^{3}J = 3.1$ Hz, 1H, 4'-H), 3.45–3.67 (m, 2H, 1'-H_a, 5'-H), 3.53 (q, ${}^{3}J = 6.8$ Hz, 1H, 2-H), 3.69 (dt, $^{2}J = 10.6$ Hz, $^{3}J = 5.2$ Hz, 1H, 1'-H_b), 4.61 (d, $^{3}J =$ 10.3 Hz, 1H, NHCO), 5.07 (d, ${}^{2}J = 12.2$ Hz, 1H, CH_aH_bPh), 5.12 (d, ²J = 12.2 Hz, 1H, CH_aH_bPh), 7.28– 7.40 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 19.4$ (q, C-3), 19.7 (q, CH(CH₃)_a(CH₃)_b), 20.0 (q, CH(CH₃)_a(*C*H₃)_b), 27.0 (t, C-3'), 28.0 (q, C(*C*H₃)₃), 29.8 (t, C-2'), 30.1 (d, C-6'), 54.3 (d, C-2), 56.5 (d, C-4'), 57.3 (d, C-5'), 62.8 (t, C-1'), 66.8 (t, *C*H₂Ph), 80.8 (s, *C*(CH₃)₃), 128.1 (d, 2C, Ph), 128.1 (d, Ph), 128.5 (d, 2C, Ph), 136.6 (s, Ph), 157.1 (s, NCHO), 174.6 (s, C-1) ppm; IR (KBr): $\bar{\nu} = 3,331$ (N–H, O–H), 1,724 (C=O) cm⁻¹; MS (FAB pos.): *m*/*z* (%) = 423 (100) [(M + H)⁺]; HRMS (C₂₃H₃₉N₂O₅): calcd. 423.2859, found 423.2863.

tert-Butyl (2S,4'S,5'S)-2-[5-(benzyloxycarbonylamino)-1hydroxy-6-methyl-4-heptylamino]-4-methylpentanoate (48a, C₂₆H₄₄N₂O₅)

Alkene **31a** (5.36 g, 12.0 mmol) and 48.0 cm^3 of a solution of 9-BBN (0.5 M in THF, 24.0 mmol) in 50 cm³ anhydrous THF were reacted according to GP 9 within 3 h at room temperature. Purification by chromatography (hexanes-EtOAc $2:1 \rightarrow 3:2$) yielded 5.25 g alcohol 48a (11.3 mmol, 94%) as a colourless oil. $R_f = 0.27$ (hexanes-EtOAc 2:1); $[\alpha]_D^{20} = -29.7 \times 10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ $(c = 1.32, \text{ CHCl}_3);$ ¹H NMR (400 MHz, CDCl₃): $\delta = 0.88$ (d, ${}^{3}J = 6.6$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.91 (d, ${}^{3}J = 6.6$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.92 (d, ${}^{3}J =$ 6.6 Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.95 (d, ${}^{3}J = 6.6$ Hz, 3H, $CH_2CH(CH_3)_a(CH_3)_b)$, 1.17 (ddt, ${}^2J = 13.7$ Hz, ${}^3J = 9.7$ Hz, ${}^{3}J = 6.7$ Hz, 1H, 3'-H_a), 1.23–1.31 (m, 1H, 3-H_a), 1.46 (s, 9H, C(CH₃)₃), 1.44-1.75 (m, 6H, 6'-H, 3'-H_b, 2'-H₂, 4-H, 3-H_b), 2.41 (bs, 2H, OH, CHNHCH), 2.63 (dt, ${}^{3}J = 9.3$ Hz, ${}^{3}J = 3.2$ Hz, 1H, 4'-H), 3.45 (t, ${}^{3}J = 7.1$ Hz, 1H, 2-H), 3.54 (dt, ${}^{2}J = 10.8$ Hz, ${}^{3}J = 5.9$ Hz, 1H, 1'-H_a), 3.60 (ddd, ${}^{3}J = 10.4$ Hz, ${}^{3}J = 8.5$ Hz, ${}^{3}J = 3.9$ Hz, 1H, 5'-H), 3.66 (dt, ${}^{2}J = 10.7$ Hz, ${}^{3}J = 5.3$ Hz, 1H, 1'-H_h), 4.68 (d, ${}^{3}J = 10.3$ Hz, 1H, NHCO), 5.07 (d, ${}^{2}J = 13.0$ Hz, 1H, CH_aH_bPh), 5.10 (d, ${}^{2}J = 12.9$ Hz, 1H, CH_aH_bPh), 7.28–7.39 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 19.5 (q, CH(CH_3)_a(CH_3)_b), 20.1 (q, CH(CH_3)_a(CH_3)_b),$ 22.6 (q, CH₂CH(CH₃)_a(CH₃)_b), 22.8 (q, CH₂CH(CH₃)_a (CH₃)_b), 25.0 (d, C-4), 27.1 (t, C-3'), 28.1 (q, C(CH₃)₃), 29.7 (t, C-2'), 30.1 (d, C-6'), 43.4 (t, C-3), 56.6 (d, C-4'), 57.2 (d, C-5'), 58.0 (d, C-2), 62.7 (t, C-1'), 66.7 (t, CH₂Ph), 80.9 (s, C(CH₃)₃), 128.0 (d, Ph), 128.1 (d, 2C, Ph), 128.5 (d, 2C, Ph), 136.7 (s, Ph), 157.0 (s, NHCO), 174.9 (s, C-1) ppm; IR (KBr): $\overline{v} = 3,420$ (N–H, O–H), 1,725 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 465 (100) [(M + H)⁺]; HRMS (C₂₆H₄₅N₂O₅): calcd. 465.3328, found 465.3325.

tert-Butyl (2S,4'R,5'S)-2-[5-(benzyloxycarbonylamino)-1hydroxy-6-methyl-4-heptylamino]-4-methylpentanoate (**48b**, C₂₆H₄₄N₂O₅)

Alkene **31b** (6.27 g, 14.0 mmol) and 56.2 cm³ of a solution of 9-BBN (0.5 M in THF, 28.1 mmol) in 50 cm³ anhydrous THF were reacted according to GP 9 within 3 h at room temperature. Purification by chromatography (hexanes–EtOAc 2:1 \rightarrow 1:1) yielded 5.49 g alcohol **48b** (11.8 mmol, 84%) as a colourless oil. $R_{\rm f} = 0.32$ (hexanes–

EtOAc 1:1); $[\alpha]_{D}^{20} = -25.7 \times 10^{-1} \text{ deg cm}^2 \text{ g}^{-1} (c = 0.81,$ CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.88$ (d, ${}^{3}J = 6.6$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.90 (d, ${}^{3}J = 6.6$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.96 (d, ${}^{3}J = 6.6$ Hz, 3H, $CH_2CH(CH_3)_a(CH_3)_b), \quad 0.97 \quad (d, \ ^3J = 6.6 \text{ Hz},$ 3H. CH₂CH(CH₃)_a(CH₃)_b), 1.22-1.38 (m, 2H, 3-H), 1.46 (s, 9H, C(CH₃)₃), 1.38–1.78 (m, 8H, 6'-H, 3'-H₂, 2'-H₂, 4-H, OH, CHNHCH), 2.69 (ddd, ${}^{3}J = 7.4$ Hz, ${}^{3}J = 5.9$ Hz, ${}^{3}J = 1.4$ Hz, 1H, 4'-H), 3.12 (dd, ${}^{3}J = 7.6$ Hz, ${}^{3}J = 6.8$ Hz, 1H, 2-H), 3.19 (td, ${}^{3}J = 10.0$ Hz, ${}^{3}J = 1.4$ Hz, 1H, 5'-H), 3.51-3.64 (m, 2H, 1'-H₂), 5.07 (d, ${}^{2}J = 12.2$ Hz, 1H, CH_aH_bPh), 5.12 (d, ²J = 12.2 Hz, 1H, CH_aH_bPh), 5.28 (d, ${}^{3}J = 10.0$ Hz, 1H, NHCO), 7.28–7.40 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 19.8$ (q, CH(CH₃)_a (CH₃)_b), 20.1 (q, CH(CH₃)_a(CH₃)_b), 22.5 (q, CH₂CH $(CH_3)_a(CH_3)_b)$, 22.7 (q, $CH_2CH(CH_3)_a(CH_3)_b)$, 24.7 (d, C-4), 28.1 (q, C(CH₃)₃), 29.6 (t, C-2'), 30.5 (t, C-3'), 31.0 (d, C-6'), 43.7 (t, C-3), 55.8 (d, C-4'), 59.7 (d, C-5'), 61.1 (d, C-2), 62.5 (t, C-1'), 66.6 (t, CH₂Ph), 81.1 (s, C(CH₃)₃), 128.0 (d, 2C, Ph), 128.1 (d, Ph), 128.6 (d, 2C, Ph), 136.8 (s, Ph), 157.0 (s, NHCO), 176.1 (s, C-1) ppm; IR (KBr): $\overline{v} = 3,342$ (N–H, O–H), 1,723 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 465 (100) [(M + H)⁺]; HRMS (C₂₆H₄₅N₂O₅): calcd. 465.3328, found 465.3326.

tert-Butyl (2S,4'S,5'S) and (2S,4'R,5'S)-2-[5-(benzyloxy-carbonylamino)-1-hydroxy-7-methyl-4-octylamino]-3-phe-nylpropanoate (**49a**, **49b**, $C_{30}H_{44}N_2O_5$)

Alkene **32a/32b** (2.42 g, 4.89 mmol) and 19.6 cm³ of a solution of 9-BBN (0.5 M in THF, 9.78 mmol) in 20 cm³ anhydrous THF were reacted according to GP 9 within 3 h at room temperature. Purification by chromatography (hexanes–EtOAc 2:1 \rightarrow 1:1) yielded 581 mg alcohol **49a** (1.13 mmol, 23%) and 728 mg alcohol **49b** (1.42 mmol, 29%) as colourless oils.

49a: $R_{\rm f} = 0.20$ (hexanes-EtOAc 2:1); $[\alpha]_{\rm D}^{20} = -24.2 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (*c* = 1.07, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.80$ (d, ${}^{3}J = 6.6$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.83 (d, ${}^{3}J = 6.6$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.97 (ddd, ${}^{2}J = 13.5$ Hz, ${}^{3}J = 8.7$ Hz, ${}^{3}J = 4.9$ Hz, 1H, 6'-H_a), 1.05 $(ddd, {}^{2}J = 13.5 \text{ Hz}, {}^{3}J = 9.8 \text{ Hz}, {}^{3}J = 5.5 \text{ Hz}, 1\text{H}, 6'-\text{H}_{b}),$ 1.39 (s, 9H, C(CH₃)₃), 1.30-1.70 (m, 7H, 2'-H₂, 3'-H₂, 7'-H, CHNHCH, OH), 2.40 (td, ${}^{3}J = 6.8$ Hz, ${}^{3}J = 1.7$ Hz, 1H, 4'-H), 2.71 (dd, ${}^{2}J = 13.4$ Hz, ${}^{3}J = 8.2$ Hz, 1H, 3-H_a), 2.84 (dd, ${}^{2}J = 13.4$ Hz, ${}^{3}J = 6.1$ Hz, 1H, 3-H_b), 3.34 (dd, ${}^{3}J = 8.3$ Hz, ${}^{3}J = 6.1$ Hz, 1H, 2-H), 3.53–3.60 (m, 2H, 1'-H₂), 3.62 (tdd, ${}^{3}J = 9.6$ Hz, ${}^{3}J = 4.8$ Hz, ${}^{3}J = 1.6$ Hz, 1H, 5'-H), 4.89 (d, ${}^{3}J = 9.7$ Hz, 1H, NHCO), 5.05 (d, $^{2}J = 12.6$ Hz, 1H, OCH_aH_bPh), 5.08 (d, $^{2}J = 12.8$ Hz, 1H, OCH₂*H*_bPh), 7.15–7.40 (m, 10H, 2 Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 22.1$ (q, CH(CH₃)_a(CH₃)_b), 23.2 (q, CH(CH₃)_a(CH₃)_b), 24.8 (d, C-7'), 28.0 (q, C(CH₃)₃), 29.6 (t, C-2' or C-3'), 29.7 (t, C-2' or C-3'), 40.5 (t, C-3), 42.4 (t, C-6'), 51.4 (d, C-5'), 59.5 (d, C-4'), 62.6 (t, C-1'), 64.1 (d, C-2), 66.5 (t, OCH₂Ph), 81.5 (s, $C(CH_3)_3$), 126.6 (d, Ph), 128.0 (d, 2C, Ph), 128.0 (d, Ph), 128.3 (d, 2C, Ph), 128.5 (d, 2C, Ph), 129.5 (2d, Ph), 136.8 (s, Ph), 137.9 (s, Ph), 156.4 (s, NHCO), 174.9 (s, C-1) ppm; IR (KBr): $\overline{\nu} = 3,344$ (N–H, O–H), 1,719 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 513 (100) [(M + H)⁺]; HRMS (C₃₀H₄₅N₂O₅): calcd. 513.3328, found 513.3331.

49b: $R_{\rm f} = 0.11$ (hexanes–EtOAc 2:1); $[\alpha]_{\rm D}^{20} = +4.8 \times$ $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.83, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.87$ (d, ${}^{3}J = 6.6$ Hz, 6H, CH(CH₃)₂), 1.05 $(ddd, {}^{2}J = 13.5 \text{ Hz}, {}^{3}J = 9.2 \text{ Hz}, {}^{3}J = 3.6 \text{ Hz}, 1\text{H}, 6'-\text{H}_{a}),$ 1.20 (ddd, ${}^{2}J = 13.9$ Hz, ${}^{3}J = 11.0$ Hz, ${}^{3}J = 4.3$ Hz, 1H, 6'-H_b), 1.37 (s, 9H, C(CH₃)₃), 1.25–1.65 (m, 5H, 2'-H₂, 3'-H₂, 7'-H), 2.10 (bs, 2H, OH, CHNHCH), 2.50 (ddd, ${}^{3}J = 8.4$ Hz, ${}^{3}J = 5.7$ Hz, ${}^{3}J = 3.1$ Hz, 1H, 4'-H), 2.71 $(dd, {}^{2}J = 13.3 \text{ Hz}, {}^{3}J = 8.1 \text{ Hz}, 1\text{H}, 3\text{-H}_{a}), 2.86 (dd,$ $^{2}J = 13.3 \text{ Hz}, \quad ^{3}J = 6.4 \text{ Hz}, \quad 1\text{H}, \quad 3\text{-H}_{b}), \quad 3.52 \quad (\text{dd},$ ${}^{3}J = 8.0$ Hz, ${}^{3}J = 6.3$ Hz, 1H, 2-H), 3.54–3.60 (m, 1H, 1'-H_a), 3.64 (dt, ${}^{2}J = 11.0$ Hz, ${}^{3}J = 5.9$ Hz, 1H, 1'-H_b), 3.74–3.83 (m, 1H, 5'-H), 4.46 (d, ${}^{3}J = 9.6$ Hz, 1H, NHCO), 5.04 (s, 2H, OCH₂Ph), 7.10-7.40 (m, 10H, 2 Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.9$ (q, $CH(CH_3)_a(CH_3)_b)$, 23.6 (q, $CH(CH_3)_a(CH_3)_b)$, 24.7 (d, C-7'), 28.0 (q, C(CH₃)₃), 28.3 (t, C-3'), 29.8 (t, C-2'), 39.2 (t, C-3), 40.6 (t, C-6'), 50.4 (d, C-5'), 60.1 (d, C-4'), 62.6 (d, C-2), 62.7 (t, C-1'), 66.5 (t, OCH₂Ph), 81.4 (s, C(CH₃)₃), 126.5 (d, Ph), 128.0 (d, 2C, Ph), 128.0 (d, Ph), 128.3 (d, 2C, Ph), 128.5 (d, 2C, Ph), 129.6 (2d, Ph), 136.7 (s, Ph), 136.8 (s, Ph), 156.2 (s, NHCO), 174.5 (s, C-1) ppm; IR (KBr): $\overline{v} = 3,398, 3,341$ (N–H, O–H), 1,720 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 513 (100) [(M + H)⁺]; HRMS (C₃₀H₄₅N₂O₅): calcd. 513.3328, found 513.3,331.

tert-Butyl (2S,4'R,5'S)-2-[5-(*benzyloxycarbonylamino*)-1*hydroxy*-6-*methyl*-4-*heptylamino*]-3-*methylbutanoate* (**50b**, C₂₅H₄₂N₂O₅)

Alkene **33b** (995 mg, 2.30 mmol) and 9.20 cm^3 of a solution of 9-BBN (0.5 M in THF, 4.60 mmol) in 10 cm³ anhydrous THF were reacted according to GP 9 within 3 h at room temperature. Purification by chromatography (hexanes-EtOAc 2:1 \rightarrow 1:1) yielded 731 mg alcohol **50b** (1.62 mmol, 71%) as a colourless oil. $R_{\rm f} = 0.45$ (hexanes-EtOAc 1:1); $[\alpha]_{D}^{20} = -24.9 \times 10^{-1} \text{ deg cm}^2 \text{ g}^{-1} (c = 1.11,$ CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.91$ (d, ${}^{3}J = 6.8$ Hz, 9H, 3 CHCH₃), 0.94 (d, ${}^{3}J = 6.6$ Hz, 3H, CHCH₃), 1.20 (ddt, ${}^{2}J = 14.8$ Hz, ${}^{3}J = 9.1$ Hz, ${}^{3}J = 6.7$ Hz, 1H, 3'-H_a), 1.47 (s, 9H, C(CH₃)₃), 1.59 (dtd, ${}^{2}J = 14.4 \text{ Hz}, {}^{3}J = 7.5 \text{ Hz}, {}^{3}J = 3.1 \text{ Hz}, 1\text{H}, 3'-\text{H}_{b}),$ 1.64–1.72 (m, 2H, 2'-H₂), 1.73 (dsept, ${}^{3}J = 8.3$ Hz, ${}^{3}J = 6.8$ Hz, 1H, 3-H), 1.82 (φ -oct, ${}^{3}J = 6.7$ Hz, 1H, 6'-H), 2.53 (bs, 2H, OH, CHNHCH), 2.60 (dt, ${}^{3}J = 9.2$ Hz, ${}^{3}J = 3.3$ Hz, 1H, 4'-H), 3.15 (d, ${}^{3}J = 6.6$ Hz, 1H, 2-H), 3.55 (dt, ${}^{2}J$ = 10.8 Hz, ${}^{3}J$ = 6.0 Hz, 1H, 1'-H_a), 3.54–3.62 (m, 1H, 5'-H), 3.67 (dt, ${}^{2}J$ = 10.7 Hz, ${}^{3}J$ = 5.3 Hz, 1H, 1'-H_b), 4.70 (d, ${}^{3}J$ = 10.5 Hz, 1H, NHCO), 5.08 (s, 2H, CH₂Ph), 7.28–7.37 (m, 5H, Ph) ppm; 13 C NMR (100 MHz, CDCl₃): δ = 18.8 (q, CHCH₃), 19.1 (q, CHCH₃), 19.5 (q, CHCH₃), 20.1 (q, CHCH₃), 27.1 (t, C-3'), 28.1 (q, C(CH₃)₃), 29.7 (d, C-2'), 30.0 (d, C-3), 31.9 (d, C-6'), 56.9 (d, C-4' or C-5'), 57.0 (d, C-4' or C-5'), 62.7 (t, C-1'), 65.3 (d, C-2), 66.7 (t, CH₂Ph), 80.9 (s, C(CH₃)₃), 128.1 (d, Ph), 128.1 (d, 2C, Ph), 128.5 (d, 2C, Ph), 136.7 (s, Ph), 156.9 (s, NHCO), 174.9 (s, C-1) ppm; IR (KBr): $\bar{\nu}$ = 3,340 (N–H, O–H), 1,722 (C=O) cm⁻¹; MS (FAB pos.): *m*/*z* (%) = 451 (64) [(M + H)⁺]; HRMS (C₂₅H₄₃N₂O₅): calcd. 451.3172, found 451.3171.

tert-Butyl (2*S*,4'*S*,5'*S*)-2-[5-(*benzyloxycarbonylamino*)-1*hydroxy*-6-*methyl*-4-*heptylamino*]-3-*phenylpropanoate* (**51a**, C₂₀H₄₂N₂O₅)

Alkene **34a** (3.53 g, 7.34 mmol) and 29.4 cm^3 of a solution of 9-BBN (0.5 M in THF, 14.7 mmol) in 30 cm³ anhydrous THF were reacted according to GP 9 within 3 h at room temperature. Purification by chromatography (hexanes-EtOAc $2:1 \rightarrow 3:2$) yielded 3.44 g alcohol 51a (6.90 mmol, 94%) as a colourless oil. $R_{\rm f} = 0.22$ (hexanes-EtOAc 2:1); $[\alpha]_{D}^{20} = -36.5 \times 10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ $(c = 0.82, \text{ CHCl}_3);$ ¹H NMR (400 MHz, CDCl₃): $\delta = 0.79$ (d, ${}^{3}J = 6.6$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 0.83 (d, ${}^{3}J = 6.6$ Hz, 3H, CH(CH₃)_a(CH₃)_b), 1.37 (s, 9H, C(CH₃)₃), 1.29–1.45 (m, 5H, 3'-H₂, 6'-H, OH, CHNHCH), 1.45–1.69 (m, 2H, 2'-H₂), 2.66 (td, ${}^{3}J = 6.7$ Hz, ${}^{3}J =$ 1.6 Hz, 1H, 4'-H), 2.72 (dd, ${}^{2}J = 13.3$ Hz, ${}^{3}J = 7.9$ Hz, 1H, 3-H_a), 2.82 (dd, ${}^{2}J = 13.4$ Hz, ${}^{3}J = 6.6$ Hz, 1H, 3-H_b), 3.11 (td, ${}^{3}J = 10.0$ Hz, ${}^{3}J = 1.6$ Hz, 1H, 1'-H_a), 3.30 $(dd, {}^{3}J = 8.0 \text{ Hz}, {}^{3}J = 6.6 \text{ Hz}, 1\text{H}, 2\text{-H}), 3.51\text{--}3.62 \text{ (m},$ 2H, 1'-H₂), 5.04 (d, ${}^{2}J = 12.3$ Hz, 1H, OCH_aH_bPh), 5.10 (d, ${}^{3}J = 10.1$ Hz, 1H, NHCO), 5.11 (d, ${}^{2}J = 12.3$ Hz, 1H, OCH_a H_b Ph), 7.14–7.41 (m, 10H, 2 Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 19.7$ (q, CH(CH₃)_a(CH₃)_b), 19.9 (q, CH(CH₃)_a(CH₃)_b), 28.0 (q, C(CH₃)₃), 29.5 (t, C-2'), 30.4 (t, C-3'), 30.7 (d, C-6'), 40.5 (t, C-3), 56.0 (d, C-4'), 59.6 (d, C-5'), 62.6 (t, C-1'), 64.1 (d, C-2), 66.5 (t, OCH₂Ph), 81.5 (s, C(CH₃)₃), 126.6 (d, Ph), 127.9 (d, 2C, Ph), 128.0 (d, Ph), 128.3 (d, 2C, Ph), 128.5 (d, 2C, Ph), 129.4 (2d, Ph), 136.9 (s, Ph), 137.7 (s, Ph), 157.0 (s, NHCO), 174.9 (s, C-1) ppm; IR (KBr): $\overline{v} = 3,399$ (N–H, O–H), 1,722 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 499 $(100) [(M + H)^+];$ HRMS $(C_{29}H_{43}N_2O_5):$ calcd. 499.3172, found 499.3170.

tert-Butyl (2S,4'R,5'S)-2-[5-(benzyloxycarbonylamino)-1-hydroxy-6-methyl-4-heptylamino]-3-phenylbutanoate (**51b**, C₂₉H₄₂N₂O₅)

Alkene **34b** (797 mg, 1.66 mmol) and 6.65 cm³ of a solution of 9-BBN (0.5 M in THF, 3.32 mmol) in 10 cm³

anhydrous THF were reacted according to GP 9 within 3 h at room temperature. Purification by chromatography (hexanes-EtOAc 2:1 \rightarrow 1:1) yielded 600 mg alcohol **51b** (1.20 mmol, 73%) as a colourless oil. $R_{\rm f} = 0.51$ (hexanes-EtOAc 1:1); $[\alpha]_{D}^{20} = -21.4 \times 10^{-1} \text{ deg cm}^2 \text{ g}^{-1} (c = 1.32,$ CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.87$ (d, ${}^{3}J = 6.6$ Hz, 3H, CHCH₃), 0.90 (d, ${}^{3}J = 6.6$ Hz, 3H, CHCH₃), 1.12 (ddt, ${}^{2}J = 13.6$ Hz, ${}^{3}J = 9.6$ Hz, ${}^{3}J = 6.6$ Hz, 1H, 3'-H_a), 1.33 (s, 9H, C(CH₃)₃), 1.53-1.78 (m, 4H, 2'-H₂, 3'-H_b, 6'-H), 2.33 (bs, 2H, OH, CHNHCH), 2.66 (dt, ${}^{3}J = 9.4$ Hz, ${}^{3}J = 3.1$ Hz, 1H, 4'-H), 2.77 (dd, ${}^{2}J = 13.2$ Hz, ${}^{3}J = 7.1$ Hz, 1H, 1'-H_a), 2.87 (dd, ${}^{2}J = 13.1$ Hz, ${}^{3}J = 7.6$ Hz, 1H, 3-H_b), 3.55 (ddd, ${}^{2}J = 10.9$ Hz, ${}^{3}J =$ 7.4 Hz, ${}^{3}J = 4.7$ Hz, 1H, 1'-H_a), 3.59 (ddd, ${}^{3}J = 10.5$ Hz, ${}^{3}J = 8.7$ Hz, ${}^{3}J = 3.4$ Hz, 1H, 5'-H), 3.68 (ddd, ${}^{2}J =$ 10.7 Hz, ${}^{3}J = 5.8$ Hz, ${}^{3}J = 4.5$ Hz, 1H, 1'-H_b), 3.74 (dd, ${}^{3}J = 7.4$ Hz, ${}^{3}J = 6.9$ Hz, 1H, 2-H), 4.49 (d, ${}^{3}J =$ 10.5 Hz, 1H, NHCO), 5.01 (d, ${}^{2}J = 12.2$ Hz, 1H, CH_aH_bPh), 5.09 (d, ²J = 12.2 Hz, 1H, CH_aH_bPh), 7.15– 7.38 (m, 10H, 2 Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 19.6$ (q, CHCH₃), 20.0 (q, CHCH₃), 27.0 (t, C-3'), 27.9 $(q, C(CH_3)_3), 29.9 (t, C-2'), 30.0 (d, C-6'), 40.2 (t, C-3),$ 56.5 (d, C-4'), 57.0 (d, C-5'), 60.8 (d, C-2), 62.7 (t, C-1'), 66.8 (t, CH₂Ph), 81.1 (s, C(CH₃)₃), 126.5 (d, Ph), 128.1 (d, 2C, Ph), 128.1 (d, Ph), 128.2 (d, 2C, Ph), 128.5 (d, 2C, Ph), 129.6 (2d, Ph), 136.6 (s, Ph), 137.2 (s, Ph), 156.9 (s, NHCO), 173.6 (s, C-1) ppm; IR (KBr): $\overline{v} = 3,341$ (N–H, O–H), 1,720 (C=O) cm⁻¹; MS (FAB pos.): m/z (%) = 499 $(100) [(M + H)^+];$ HRMS $(C_{29}H_{43}N_2O_5):$ calcd. 499.3172, found 499.3169.

tert-Butyl (2S,4'S,5'S)-2-[2-(benzyloxycarbonylamino)-6hydroxy-3-hexylamino]-4-methylpentanoate (52a, $C_{24}H_{40}N_2O_5$)

Alkene 35 as a mixture of isomers (322 mg, 0.77 mmol) and 3.10 cm³ of a solution of 9-BBN (0.5 M in THF. 1.54 mmol) in 5 cm³ anhydrous THF were reacted according to GP 9 within 3 h at room temperature. Purification by chromatography (CH₂Cl₂-MeOH 40:1) yielded 215 mg alcohol 52a as a single isomer (0.49 mmol, 64%) as a colourless oil. $R_{\rm f} = 0.31$ (CH₂Cl₂–MeOH 40:1); $[\alpha]_{\rm D}^{20} =$ $-13.2 \times 10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ (c = 0.69, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.90$ (d, ${}^{3}J = 6.5$ Hz, 3H, $CH(CH_3)_a(CH_3)_b)$, 0.91 (d, ${}^{3}J = 6.5$ Hz, 3H, $CH(CH_3)_a$ $(CH_3)_{\rm b}$, 1.16 (d, ${}^{3}J = 6.8$ Hz, 3H, 6'-H₃), 1.28–1.70 (m, 8H, 3-H₂, 2'-H₂, 3'-H₂, OH, CHNHCH), 1.46 (s, 9H, $C(CH_3)_3$, 1.71–1.80 (m, 1H, 4-H), 2.39 (td, ${}^{3}J = 6.6$ Hz, ${}^{3}J = 2.0$ Hz, 1H, 4'-H), 3.20 (dd, ${}^{3}J = 7.8$ Hz, ${}^{3}J = 6.6$ Hz, 1H, 2-H), 3.59 (φ -t, ${}^{3}J = 6.2$ Hz, 2H, 1'-H₂), 3.75 (ddd, ${}^{3}J = 9.2$ Hz, ${}^{3}J = 6.7$ Hz, ${}^{3}J = 2.0$ Hz, 1H, 5'-H), 5.06 (d, ${}^{2}J = 12.2$ Hz, 1H, CH_aH_bPh), 5.10 (d, ${}^{2}J = 12.2$ Hz, 1H, CH_aH_bPh), 5.17 (d, ${}^{3}J = 8.4$ Hz, 1H, NHCO), 7.28–7.38 (m, 5H, Ph) ppm; ¹³C NMR (100 MHz,

CDCl₃): $\delta = 19.0$ (q, C-6'), 22.4 (q, CH(CH₃)_a(CH₃)_b), 22.8 (q, CH(CH₃)_a(CH₃)_b), 24.8 (d, C-4), 28.1 (q, 3C, C(CH₃)₃), 29.4 (t, C-2' or C-3'), 29.5 (t, C-2' or C-3'), 43.7 (t, C-3), 48.8 (d, C-4'), 60.1 (d, C-5'), 61.0 (d, C-2), 62.6 (t, C-1'), 66.6 (t, CH₂Ph), 81.1 (s, C(CH₃)₃), 128.1 (d, Ph), 128.1 (d, 2C, Ph), 128.5 (d, 2C, Ph), 136.7 (s, Ph), 156.2 (s, NHCO), 176.0 (s, C-1) ppm; IR (KBr): $\bar{\nu} = 3,342$ (N–H, O–H), 1,724 (bs, C=O) cm⁻¹; MS (FAB pos.): m/z(%) = 437 (100) [(M + H)⁺]; HRMS (C₂₄H₄₁N₂O₅): calcd. 437.3015, found 437.3013.

References

- 1. Coppola GM, Schuster HF (1987) Asymmetric synthesis. Construction of chiral molecules using amino acids. Wiley, New York
- 2. Seebach D, Kalinowski H-O (1976) Nachr Chem Tech Lab 24:415
- 3. Blaser H-U (1992) Chem Rev 92:935
- 4. Bloch R (1998) Chem Rev 98:1407
- 5. Manabe K, Oyamada H, Sugita K, Kobayashi S (1999) J Org Chem 64:8054
- Hirabayashi R, Ogawa C, Sugiura M, Kobayashi S (2001) J Am Chem Soc 123:9493
- 7. Merino P, Delso I, Mannucci V, Tejero T (2006) Tetrahedron Lett 47:3311
- 8. Dullin A, Dufrasne F, Gelbcke M, Gust R (2006) ChemMed-Chem 1:644
- 9. Fleming JJ, McReynolds MD, Du Bois J (2007) J Am Chem Soc 129:9964
- Myers AG, Kung DW, Zhong B, Movassaghi M, Kwon S (1999) J Am Chem Soc 121:8401
- 11. Linder MR, Podlech J (1999) Org Lett 1:869
- 12. Steurer S, Podlech J (1999) Org Lett 1:481
- 13. Steurer S, Podlech J (1999) Eur J Org Chem 1551
- 14. Steurer S, Podlech J (2002) Eur J Org Chem 899
- 15. Maier TC, Frey WU, Podlech J (2002) Eur J Org Chem 2686

- 16. Taubinger AA, Fenske D, Podlech J (2008) Synlett 539
- Taubinger AA, Fenske D, Podlech J (2008) Tetrahedron 64:8659
 Podlech J, Gurrath M, Müller G, Lohof E (2002) In: Goodman M, Felix A, Moroder L, Toniolo C (eds) Houben-Weyl, methods of organic chemistry. Synthesis of peptides and peptidomimetics,
- vol E22a. Georg Thieme Verlag, Stuttgart, p 41 19. Ritter AR, Miller MJ (1994) J Org Chem 59:4602
- 20. Soai K, Oyamada H, Takase M (1984) Bull Chem Soc Jpn
- 57:2327
- 21. Maat L, Wulkan RW (1981) Recl Trav Chim Pays-Bas 100:204
- 22. Saitoh A, Uda T, Morimoto T (1999) Tetrahedron Asymmetr 10:4501
- 23. Hsiao Y, Hegedus LS (1997) J Org Chem 62:3586
- 24. Soucek M, Urban J (1995) Collect Czech Chem Commun 60:693
- 25. Leanna MR, Sowin TJ, Morton HE (1992) Tetrahedron Lett 33:5029
- 26. Taschner E, Wasielewski C, Biernat JF (1961) Justus Liebigs Ann Chem 646:119
- 27. Brickmann K, Yuan Z, Sethson I, Somfai P, Kihlberg J (1999) Chem Eur J 5:2241
- Bocoum A, Savoia D, Umani-Ronchi A (1993) J Chem Soc Chem Comm 1542
- 29. Ohshima T, Gnanadesikan V, Shibuguchi T, Fukuta Y, Nemoto T, Shibasaki M (2003) J Am Chem Soc 125:11206
- Spectral Database for Organic Compounds, SDBS (2009) National Institute of Advanced Industrial Science and Technology (AIST), Japan. http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/ cre_index.cgi?lang=eng
- 31. Lethinen C, Brunow G (2000) Org Process Res Dev 4:544
- 32. Schreiner PR, Wittkopp A (2002) Org Lett 4:217
- Weil T, Kotke M, Kleiner CM, Schreiner PR (2008) Org Lett 10:1513
- 34. Doyle AG, Jacobsen EN (2007) Chem Rev 107:5713
- 35. Alexakis A, Tomassini A, Chouillet C, Roland S, Mangeney P, Bernardinelli G (2000) Angew Chem Int Ed 39:4093
- Brown HC, Knights EF, Scouten CG (1974) J Am Chem Soc 96:7765
- 37. Still WC, Kahn M, Mitra A (1978) J Org Chem 43:2923
- Sheldrick GM (1997) SHELXS97 and SHELXL97, Release 97-2. Universität Göttingen, Deutschland